Probing Structural Dynamics by Interaction Between Chromophores

  • Rasmus Y. Brogaard
Part of the Springer Theses book series (Springer Theses)


This chapter deals with the experimental results published in Ref. IV in which structural dynamics in the radical cation of 1,3-dibromopropane (DBP) was probed by exploiting the interaction between the bromine atoms. As such, this experiment illustrates a simpler, although not as general, way of probing conformational changes by interaction between chromophores than more involved techniques as for example 2D-IR. The experimental technique employed is time-resolved ion photofragmentation (TRPF) spectroscopy. Strictly speaking, this technique does not fall within the field of time-resolved photoionization and therefore the first section is devoted to a review of the pump probe scheme of TRPF. This is followed by a motivation of the experiment on DBP and a discussion of the obtained results. The experiments were performed using the Copenhagen setup (Sect. 6.1, page 65).


Wave Packet Radical Cation Pump Pulse Probe Pulse Excited Electronic State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ho, J.-W., Chen, W.-K., Cheng, P.-Y.: J. Chem. Phys. 131, 134308 (2009)CrossRefGoogle Scholar
  2. 2.
    Baumert, T., Röttgermann, C., Rothenfusser, C., Thalweiser, R., Weiss, V., Gerber, G.: Phys. Rev. Lett. 69, 1512–1515 (1992)CrossRefGoogle Scholar
  3. 3.
    Cardoza, D., Pearson, B.J., Baertschy, M., Weinacht, T.: J. Photochem. Photobiol. A 180, 277–281 (2006)Google Scholar
  4. 4.
    Cardoza, D., Pearson, B.J., Weinacht, T.: J. Chem. Phys. 126, 084308 (2007)CrossRefGoogle Scholar
  5. 5.
    Geissler, D., Pearson, B.J., Weinacht, T.: J. Chem. Phys. 127, 204305 (2007)CrossRefGoogle Scholar
  6. 6.
    Pearson, B.J., Nichols, S.R., Weinacht, T.: J. Chem. Phys. 127, 131101 (2007)CrossRefGoogle Scholar
  7. 7.
    Loh, Z.-H., Leone, S.R.: J. Chem. Phys. 128, 204302 (2008)CrossRefGoogle Scholar
  8. 8.
    Yazawa, H., Shioyama, T., Hashimoto, H., Kannari, F., Itakura, R., Yamanouchi, K.: Appl. Phys. B Lasers Opt. 98, 275–282 (2010)CrossRefGoogle Scholar
  9. 9.
    Rosenberg, M., Minitti, M.P., Rusteika, N., Bisgaard, C.Z., Deb, S., Weber, P.M., Sølling, T.I.: J. Phys. Chem. A 114, 7021–7025 (2010)CrossRefGoogle Scholar
  10. 10.
    Plenge, J., Wirsing, A., Wagner-Drebenstedt, I., Halfpap, I., Kieling, B., Wassermann, B., Ruhl, E.: Phys. Chem. Chem. Phys. 13, 8705–8714 (2011)CrossRefGoogle Scholar
  11. 11.
    Kötting, C., Diau, E.W.-G., Sølling, T.I., Zewail, A.H.: J. Phys. Chem. A 106, 7530–7546 (2002)CrossRefGoogle Scholar
  12. 12.
    Lakowicz, J.R.: Principles of Fluorescence Spectroscopy, 3rd edn. Klyuwer Academix, Dordrecht (2006)CrossRefGoogle Scholar
  13. 13.
    Cheng, W., Kuthirummal, N., Gosselin, J.L., Sølling, T.I., Weinkauf, R., Weber, P.M.: J. Phys. Chem. A 109, 1920–1925 (2005)CrossRefGoogle Scholar
  14. 14.
    Farup, P.E., Stølevik, R.: Acta. Chem. Scand. A 28a, 680–692 (1974)Google Scholar
  15. 15.
    Hasegawa, A., Symons, M.C.R., Shiotani, M.: J. Chem. Soc. Perkin Trans. 2, 657–665 (1989)Google Scholar
  16. 16.
    Baboul, A.G., Curtiss, L.A., Redfern, P.C., Raghavachari, K.: J. Chem. Phys. 110, 7650–7657 (1999)CrossRefGoogle Scholar
  17. 17.
    NIST Chemistry WebBook, NIST Standard Reference Database Number 69.
  18. 18.
    Brogaard, R.Y., Møller, K.B., Sølling, T.I.: J. Phys. Chem. A 112, 10481–10486 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemical Engineering, SUNCAT Center for Interface Science and CatalysisStanford UniversityStanfordUSA

Personalised recommendations