Simulation: The Norrish Type-I Reaction in Acetone

  • Rasmus Y. Brogaard
Part of the Springer Theses book series (Springer Theses)


In the following the theoretical framework introduced in the previous chapter is applied to a real case of ultrafast organic photodynamics: the Norrish Type-I reaction in acetone. Particular attention is payed to how the wave packet dynamics is expressed in the time-resolved photoionization signal and it will become clear that a close connection between theory and experiment is crucial for even a qualitatively correct interpretation of experimental results. The simulations presented in this chapter have been published in Ref. I.


Wave Packet Wigner Distribution Central Carbon Atom Ultrafast Dynamic Pyramidalization Coordinate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gilbert, A., Baggott, J.: Chapter 7: photochemical reactions of the carbonyl chromophore. In: Gilbert, A., Baggott, J. (eds.) Essentials of Molecular Photochemistry, pp. 288–301. Blackwell Scientific Publications, Oxford (1991)Google Scholar
  2. 2.
    Shibata, T., Suzuki, T.: Chem. Phys. Lett. 262, 115–119 (1996)CrossRefGoogle Scholar
  3. 3.
    Zhong, Q., Poth, L., Castleman, A.W. Jr.: J. Chem. Phys. 110, 192–196 (1999)Google Scholar
  4. 4.
    Owrutsky, J.C., Baronavski, A.P.: J. Chem. Phys. 110, 11206–11213 (1999)CrossRefGoogle Scholar
  5. 5.
    Farmanara, P., Stert, V., Radloff, W.: Chem. Phys. Lett. 320, 697–702 (2000)CrossRefGoogle Scholar
  6. 6.
    Diau, E.W.-G., Kötting, C., Zewail, A.H.: Chem. Phys. Chem. 2, 273–293 (2001)CrossRefGoogle Scholar
  7. 7.
    Sølling, T.I., Diau, E.W.-G., Kötting, C., Feyter, S.D., Zewail, A.H.: Chem. Phys. Chem. 3, 79–97 (2002)CrossRefGoogle Scholar
  8. 8.
    Diau, E.W.-G., Kötting, C., Sølling, T.I., Zewail, A.H.: Chem. Phys. Chem. 3, 57–78 (2002)CrossRefGoogle Scholar
  9. 9.
    Rusteika, N., Møller, K.B., Sølling, T.I.: Chem. Phys. Lett. 461, 193–197 (2008)CrossRefGoogle Scholar
  10. 10.
    Maeda, S., Ohno, K., Morokuma, K.: J. Phys. Chem. Lett. 1, 1841–1845 (2010)CrossRefGoogle Scholar
  11. 11.
    Roos, B.O.: In: Rice, S.A., Prigogine, I. (eds.) Advances in Chemical Physics, vol. 69, pp. 399--445. Wiley, Chichester (1987)Google Scholar
  12. 12.
    Levine, B.G., Martínez, T.J.J.: Phys. Chem. A 113, 12815–12824 (2009)CrossRefGoogle Scholar
  13. 13.
    SuperDyson. Fortran90 code for calculating Dyson orbitals from small CI expansions. Made by Dr. Serguei Patchkovskii, Steacie Institute for Molecular Sciences, National Research Council Canada, OttawaGoogle Scholar
  14. 14.
    Hudock, H.R., Levine, B.G., Thompson, A.L., Satzger, H., Townsend, D., Gador, N., Ullrich, S., Stolow, A., Martínez, T.J.: J. Phys. Chem. A 111, 8500–8508 (2007)CrossRefGoogle Scholar
  15. 15.
    Tao, H., Allison, T.K., Wright, T.W., Stooke, A.M., Khurmi, C., van Tilborg, J., Liu, Y., Falcone, R.W., Belkacem, A., Martinez, T.J.: J. Chem. Phys. 134, 244306 (2011)CrossRefGoogle Scholar
  16. 16.
    Heller, E.J.: Acc. Chem. Res. 14, 368–375 (1981)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemical Engineering, SUNCAT Center for Interface Science and CatalysisStanford UniversityStanfordUSA

Personalised recommendations