Advertisement

Simulation of Time-Resolved Photoionization Signals

  • Rasmus Y. Brogaard
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In any scientific field there is a mutual benefit from the combination of theory and experiment in which progress in one discipline stimulates new efforts in the other. Thus, the pioneering theoretical work of Seel and Domcke lead to the birth of ultrafast time-resolved photoionization experiments [1, 2]. Whereas much effort in theory is devoted to such exploratory tracks, this chapter will focus on the simulation of signals obtained from experiments already conducted. While striving for the best possible agreement between theory and experiment the real purpose of such simulations is to aid the interpretation of experimental data, ultimately aiming at a better understanding of the molecular dynamics under investigation.

Keywords

Wave Packet Probe Pulse Electronic Structure Calculation Nuclear Dynamic Quantum Molecular Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Seel, M., Domcke, W.: J. Chem. Phys. 95, 7806–7822 (1991)CrossRefGoogle Scholar
  2. 2.
    Seel, M., Domcke, W.: Chem. Phys. 151, 59–72 (1991)CrossRefGoogle Scholar
  3. 3.
    Ben-Nun, M., Martínez, T.J.: Adv. Chem. Phys. 121, 439–512 (2002)CrossRefGoogle Scholar
  4. 4.
    Ben-Nun, M., Martínez, T.J.: Chem. Phys. Lett. 298, 57–65 (1998)CrossRefGoogle Scholar
  5. 5.
    Ben-Nun, M., Martínez, T.: J. Chem. Phys. 108, 7244–7257 (1998)CrossRefGoogle Scholar
  6. 6.
    Ben-Nun, M., Quenneville, J., Martínez, T.J.: J. Phys. Chem. A 104, 5161–5175 (2000)CrossRefGoogle Scholar
  7. 7.
    Hack, M.D., Wensmann, A.M., Truhlar, D.G., Ben-Nun, M., Marti­­nez, T.J.: J. Chem. Phys. 115, 1172–1186 (2001)CrossRefGoogle Scholar
  8. 8.
    Ko, C., Levine, B., Toniolo, A., Manohar, L., Olsen, S., Werner, H.-J., Martínez, T.J.: J. Am. Chem. Soc. 125, 12710–12711 (2003)CrossRefGoogle Scholar
  9. 9.
    Baeck, K.K., Martinez, T.J.: Chem. Phys. Lett. 375, 299–308 (2003)CrossRefGoogle Scholar
  10. 10.
    Choi, H., Baeck, K.K., Martinez, T.J.: Chem. Phys. Lett. 398, 407–413 (2004)CrossRefGoogle Scholar
  11. 11.
    Martínez, T.J.: Acc. Chem. Res. 39, 119–126 (2006)CrossRefGoogle Scholar
  12. 12.
    Coe, J.D.: J. Martínez, T. Mol. Phys. 106, 537–545 (2008)CrossRefGoogle Scholar
  13. 13.
    Ko, C., Virshup, A.M., Martínez, T.J.: Chem. Phys. Lett. 460, 272–277 (2008)CrossRefGoogle Scholar
  14. 14.
    Hudock, H.R., Martínez, T.J.: ChemPhysChem 9, 2486–2490 (2008)CrossRefGoogle Scholar
  15. 15.
    Tao, H., Levine, B.G., Martínez, T.J.: J. Phys. Chem. A 113, 13656–13662 (2009)CrossRefGoogle Scholar
  16. 16.
    Thompson, A.L., Punwong, C., Martínez, T.J.: Chem. Phys. 370, 70–77 (2010)CrossRefGoogle Scholar
  17. 17.
    Tao, H., Allison, T.K., Wright, T.W., Stooke, A.M., Khurmi, C., van Tilborg, J., Liu, Y., Falcone, R.W., Belkacem, A., Martinez, T.J.: J. Chem. Phys. 134, 244306 (2011)CrossRefGoogle Scholar
  18. 18.
    Fuß, W., Schmid, W., Trushin, S.: Chem. Phys. 316, 225–234 (2005)CrossRefGoogle Scholar
  19. 19.
    Schalk, O., Boguslavskiy, A.E., Stolow, A.: J. Phys. Chem. A 114, 4058–4064 (2010)CrossRefGoogle Scholar
  20. 20.
    Roos, B.O.: In: Rice, S.A., Prigogine, I. (eds.) Advances in Chemical Physics, Vol. 69, pp. 399–445. Wiley, New York (1987)Google Scholar
  21. 21.
    Levine, B.G., Coe, J.D., Virshup, A.M., Martínez, T.J.: Chem. Phys. 347, 3–16 (2008)CrossRefGoogle Scholar
  22. 22.
    Mead, C.A., Truhlar, D.G.: J. Chem. Phys. 77, 6090–6098 (1982)CrossRefGoogle Scholar
  23. 23.
    Ruedenberg, K., Atchity, G.J.: J. Chem. Phys. 99, 3799–3803 (1993)CrossRefGoogle Scholar
  24. 24.
    Kosloff, R.J.: Phys. Chem. 92, 2087–2100 (1988)CrossRefGoogle Scholar
  25. 25.
    Light, J.C., Hamilton, I.P., Lill, J.V.: J. Chem. Phys. 82, 1400–1409 (1985)CrossRefGoogle Scholar
  26. 26.
    Kosloff, R.: Annu. Rev. Phys. Chem. 45, 145–178 (1994)CrossRefGoogle Scholar
  27. 27.
    Heller, E.J.: J. Chem. Phys. 62, 1544–1555 (1975)CrossRefGoogle Scholar
  28. 28.
    Burghardt, I., Meyer, H.-D., Cederbaum, L.S.: J. Chem. Phys. 111, 2927–2939 (1999)CrossRefGoogle Scholar
  29. 29.
    Worth, G.A., Burghardt, I.: Chem. Phys. Lett. 368, 502–508 (2003)CrossRefGoogle Scholar
  30. 30.
    Burghardt, I., Nest, M., Worth, G.A.: J. Chem. Phys. 119, 5364–5378 (2003)CrossRefGoogle Scholar
  31. 31.
    Burghardt, I., Giri, K., Worth, G.A.: J. Chem. Phys. 129, 174104 (2008)CrossRefGoogle Scholar
  32. 32.
    Ben-Nun, M., Martínez, T.J.: Isr. J. Chem. 47, 75–88 (2007)CrossRefGoogle Scholar
  33. 33.
    Tannor, D.J.: Introduction to Quantum Mechanics—A Time-Dependent Perspective. University Science Books, Sausalito (2007)Google Scholar
  34. 34.
    Brown, R.C., Heller, E.J.: J. Chem. Phys. 75, 186–188 (1981)CrossRefGoogle Scholar
  35. 35.
    Davis, M.J., Heller, E.J.: J. Chem. Phys. 80, 5036–5048 (1984)CrossRefGoogle Scholar
  36. 36.
    Levine, B.G., Martínez, T.J.: J. Phys. Chem. A 113, 12815–12824 (2009)CrossRefGoogle Scholar
  37. 37.
    Patchkovskii, S., Zhao, Z., Brabec, T., Villeneuve, D.M.: Phys. Rev. Lett. 97, 123003–123007 (2006)CrossRefGoogle Scholar
  38. 38.
    Patchkovskii, S., Zhao, Z., Brabec, T., Villeneuve, D.M.: J. Chem. Phys. 126, 114306 (2007)CrossRefGoogle Scholar
  39. 39.
    Fock, V.Z.: Phys. A: Hadrons Nucl. 61, 126–148 (1930)Google Scholar
  40. 40.
    Roothaan, C.C.J.: Rev. Mod. Phys. 23, 69–89 (1951)CrossRefGoogle Scholar
  41. 41.
    Sherrill, C.D.; Schaefer III, H.F.: In: Löwdin, P.-O., Sabin, J.R., Zerner, M.C., Brändas, E. (eds.) Advances in Quantum Chemistry, Vol. 34, pp. 143–269. Academic Press, New York (1999)Google Scholar
  42. 42.
    Pauli, W.Z.: Phys. A: Hadrons Nucl. 31, 765–783 (1925)Google Scholar
  43. 43.
    Pickup, B.T.: Chem. Phys. 19, 193–208 (1977)CrossRefGoogle Scholar
  44. 44.
    Oana, C.M., Krylov, A.I.: J. Chem. Phys. 127, 234106 (2007)CrossRefGoogle Scholar
  45. 45.
    Meier, C., Engel, V.: J. Chem. Phys. 101, 2673–2677 (1994)CrossRefGoogle Scholar
  46. 46.
    Arasaki, Y., Takatsuka, K., Wang, K., McKoy, V.: Chem. Phys. Lett. 302, 363–374 (1999)CrossRefGoogle Scholar
  47. 47.
    Batista, V.S., Zanni, M.T., Greenblatt, B.J., Neumark, D.M., Miller, W.H.: J. Chem. Phys. 110, 3736–3747 (1999)CrossRefGoogle Scholar
  48. 48.
    Suzuki, Y., Stener, M., Seideman, T.: J. Chem. Phys. 118, 4432–4443 (2003)CrossRefGoogle Scholar
  49. 49.
    Hudock, H.R., Levine, B.G., Thompson, A.L., Satzger, H., Townsend, D., Gador, N., Ullrich, S., Stolow, A., Martínez, T.J.: J. Phys. Chem. A 111, 8500–8508 (2007)CrossRefGoogle Scholar
  50. 50.
    Arasaki, Y., Takatsuka, K., Wang, K., McKoy, V.: J. Chem. Phys. 132, 124307 (2010)CrossRefGoogle Scholar
  51. 51.
    Møller, K.B., Henriksen, N.E., Zewail, A.H.: J. Chem. Phys. 113, 10477–10485 (2000)CrossRefGoogle Scholar
  52. 52.
    Gräfe, S., Scheidel, D., Engel, V., Henriksen, N.E., Møller, K.B.: J. Phys. Chem. A 108, 8954–8960 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Chemical Engineering, SUNCAT Center for Interface Science and CatalysisStanford UniversityStanfordUSA

Personalised recommendations