Consistent with the historical development of sound absorbers, focus in Chap. 4, the first chapter on the fundamentals of sound absorbers, was on passive absorbers. Due to their market dominance, they also predominate in all the standard literature on absorbers and silencers. When combined with conventional foil facings as air-tight protective layers against abrasion, their mass should not exceed a certain limit according to Eq. ( 4.11) in order to impede as little as possible sound entering the porous material, the actual absorber. Section 6.2 will describe how a very effective broadband absorber for medium frequencies can be produced with only a partial, for example slotted rigid panel covering a porous or fibrous material densely packed behind the entry slots. The present chapter will deal with reactive absorbers which encounter the sound field with an impermeable layer whose mass m″ per unit area is not small but very large compared to the air mass moved with the sound wave according to Eq. ( 3.2). Such a mass is only able to react with the sound field if rendered excitable as part of a resonance system.


Sound Field Sound Absorber Reverberation Time Plate Vibration Front Plate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Bies DA, Hansen CH (1996) Engineering noise control. E & FN Spon, LondonGoogle Scholar
  2. Chladni EFF (1787) Entdeckungen über die Theorie des Klanges. Weidmanns Erben und Reich LeipzigGoogle Scholar
  3. Cremer L (1981) Physik der Geige. Hirzel, StuttgartGoogle Scholar
  4. Cremer L, Müller HA (1974) Die wissenschaftlichen Grundlagen der Raumakustik, vol II. Hirzel, StuttgartGoogle Scholar
  5. Cremer L, Müller HA (1982) Principles and applications of room acoustics, vol II. Applied Science, LondonGoogle Scholar
  6. DIN EN ISO 354 (2003) Messung der Schallabsorption in HallräumenGoogle Scholar
  7. Drotleff H, Zhou X (2001) Attractive room acoustic design for multi-purpose halls. Acustica 87(6):500–504Google Scholar
  8. Drotleff H, Zha X, Scherer W (2000) Gelungene Akustik für denkmalgeschützte Räume. Bauzentrum 48(10):96–98Google Scholar
  9. Everest FA (1994) The master handbook of acoustics. McGraw-Hill, New YorkGoogle Scholar
  10. Fasold W, Veres E (2003) Schallschutz + Raumakustik in der Praxis. Bauwesen, BerlinGoogle Scholar
  11. Fasold W, Sonntag W, Winkler H (1987) Bau und Raumakustik. Bauwesen, BerlinGoogle Scholar
  12. Fletcher NH, Rossing TD (1991) The physics of musical instruments. Springer, New YorkCrossRefGoogle Scholar
  13. Ford RD, McCormick MA (1969) Panel sound absorbers. J Sound Vib 10(3):411–423CrossRefGoogle Scholar
  14. Fuchs HV (2001) Alternative fibreless absorbers—New tools and materials for noise control and acoustic comfort. Acustica 87(3):414–422Google Scholar
  15. Fuchs HV, Zha X (1996) Wirkungsweise und Auslegungshinweise für Verbund-Platten-Resonatoren. Z Lärmbekämpf 43(1):1–8Google Scholar
  16. Fuchs HV, Zha X, Schneider W (1997) Zur Akustik in Büro- und Konferenzräumen. Bauphysik 19(4):105–112Google Scholar
  17. Fuchs HV, Späh M, Pommerer M, Schneider W, Roller M (1998) Akustische Gestaltung kleiner Räume bei tiefen Frequenzen. Bauphysik 20(6):181–190Google Scholar
  18. Fuchs HV, Eckoldt D, Hemsing J (1999) Alternative sound absorbers for industrial use: acousticians on the quest for alternative attenuators. VGB Power Tech 3, 58–60Google Scholar
  19. Fuchs HV, Zha X, Pommerer M (2000) Qualifying freefield and reverberation rooms for frequencies below 100 Hz. Appl Acoust 59:303–322CrossRefGoogle Scholar
  20. Fuchs HV, Zha X, Krämer M, Zhou X, Eckoldt D, Brandstätt P, Rambausek N, Hanisch R, Leistner P, Leistner M, Zimmermann S, Babuke G (2002, 2003) Schallabsorber und Schalldämpfer. Innovatorium für Maßnahmen zur Lärmbekämpfung und Raumakustik. Parts 1–6. Bauphysik 24(2):102–113; 24(4):218–227; 24(5):286–295; 24(6):361–367; 25(2):80–88; 25(5):261–270Google Scholar
  21. Fuchs HV, Zha X, Drotleff H (2005) Relevance and treatment of the low-frequency domain for noise control and acoustic comfort in rooms. Acustica 91(5):920–927Google Scholar
  22. Hurlebaus S, Gaul L, Wang JTS (2001) An exact series solution for calculating the eigenfrequencies of orthotropic plates with completely free boundary. J Sound Vib 244(5):747–759CrossRefGoogle Scholar
  23. Kiesewetter N (1980) Schallabsorption durch Platten-Resonanzen. GesundheitsIngenieur 101(1):57–62Google Scholar
  24. Koch M (2003) Schalltechnische Charakterisierung von Verbundplatten-Resonatoren. Diploma thesis at Fraunhofer IBP, StuttgartGoogle Scholar
  25. Leistner M, Fuchs HV (2004) Supplementary acoustic measures in the conference centre of the Federal Ministry of Economy and Labour. In: Proceedings—CFA/DAGA 2004, Strasbourg, pp. 487–488Google Scholar
  26. Lord Rayleigh (1877) Theory of sound. Macmillan, LondonGoogle Scholar
  27. Lotze E (2006) Luftschallabsorption. In: Schirmer W (ed) Technischer Lärmschutz, Chap. 6. Springer, BerlinGoogle Scholar
  28. Mechel FP (1994) Schallabsorption. In: Heckl M, Müller HA (eds) Taschenbuch der Technischen Akustik, Chap. 19. Springer, BerlinGoogle Scholar
  29. Ritz W (1909) Theorie der Transversalschwingungen einer quadratischen Platte mit freien Rändern. Ann Phys 28:737–786zbMATHCrossRefGoogle Scholar
  30. Schirmer W (2006) Technischer Lärmschutz, Chaps. 4, 11 und 12. Springer, BerlinCrossRefGoogle Scholar
  31. Zha X, Fuchs HV, Späh M (1996) Messung des effektiven Absorptionsgrades in kleinen Räumen. Rundfunktechn. Mitt 40(3):77–83Google Scholar
  32. Zha X, Fuchs HV, Nocke C, Han X (1999) Measurement of an effective absorption coefficient below 100 Hz. Acoustics Bulletin (Jan/Feb 99):5–10Google Scholar
  33. Zhou X, Heinz R, Fuchs HV (1998) Zur Berechnung geschichteter Platten- und Lochplatten-Resonatoren. Bauphysik 20(3):87–95Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.BerlinGermany

Personalised recommendations