Integrated and Integrating Sound Absorbers

Chapter

Abstract

The first three chapters of this compendium on applied acoustics describe the acute need for sound damping measures for machines, plants and buildings, pointing out the special low-frequency problem. The following Chaps. 4–9 present an up-to-date overview of different effects and designs of state-of-the-art as well as some novel marketable airborne sound absorbers, focusing on classifying and describing the physical damping mechanisms, which differ greatly in detail. Table 10.1 displays once more the most important ten absorber families and their characteristic frequency ranges, in which their absorption is able to develop particularly well. However, this does not mean that, for example, reactive membrane absorbers or panel absorbers with correspondingly little mass cannot be designed as silencer splitters in ducts for frequencies at about 500 Hz (see Figs. 13.25 and 13.26) or even in the kHz range (see Figs. 13.38 and 13.39) and passive materials with correspondingly larger depths as “bass traps” e.g. in music studios or class rooms for frequencies down to far below 100 Hz, (see Everest, The master handbook of acoustics, 1994) or Sect. 10.3.

Keywords

Sound Field Sound Absorber Reverberation Time Helmholtz Resonator Outer Pipe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bedell EH (1936) Some data on a room designed for free-field measurements. J Acoust Soc Am 8(1):118Google Scholar
  2. Bork I (2005) Report on the 3rd round robin on acoustical computer simulation—Part I. Acustica 91(6):740–752Google Scholar
  3. Brandstätt P, Fuchs HV, Roller M (2002) Novel silencers and absorbers for wind tunnels and acoustic test cells. Noise Control Eng J 50(2):41–49CrossRefGoogle Scholar
  4. DIN 18 041 (2004) Hörsamkeit in kleinen bis mittelgroßen RäumenGoogle Scholar
  5. DIN 4109 (1989) Schallschutz im HochbauGoogle Scholar
  6. DIN EN ISO 140 (1997) Messung der Schalldämmung in Gebäuden und von BauteilenGoogle Scholar
  7. DIN EN ISO 354 (2001) Messung der Schallabsorption in HallräumenGoogle Scholar
  8. DIN EN ISO 3382 (2000) Messung der Nachhallzeit von Räumen mit Bezug auf andere akustische ParameterGoogle Scholar
  9. DIN EN ISO 7235 (2002) Labormessungen an Schalldämpfern in KanälenGoogle Scholar
  10. Drotleff H, Zha X, Scherer W (2000) Gelungene Akustik für denkmalgeschützte Räume. Bauzentrum 48(10):96–98Google Scholar
  11. Eckoldt D, Hemsing J (1997) Kamin mit eckigem Innenzug als integralem Schalldämpfer. Z Lärmbekämpf 44(4):115–117Google Scholar
  12. Everest FA (1994) The master handbook of acoustics. McGraw-Hill, New YorkGoogle Scholar
  13. Fuchs HV (1985) Die Installationsgeräusche in der neuen DIN 4109, part 5. Haustech Rundsch 5:273–277Google Scholar
  14. Fuchs HV (2002) Innovative sound absorption products—new tools and materials for noise control and acoustic comfort. In: Pandalalai (ed) Recent research developments—sound & vibration, part 1. Transworld Research Network, Kerala, pp 203–239Google Scholar
  15. Fuchs HV (2003) Neufassung von DIN 18041—ein Weckruf für gute Raumakustik. Bauphysik 25(6):350–357Google Scholar
  16. Fuchs HV, Eckoldt D, Essers U, Potthoff J (1992) New design concepts for silencing aeroacoustic wind tunnels. In: DGLR/AIAA 14th Aeroacoustics Conference, Aachen. DGLR Report 92-093, pp 177–186Google Scholar
  17. Fuchs HV, Lamprecht J (2013) Covered broadband absorbers improving functional acoustics in communication rooms. Appl Acoust 74(1):18–27Google Scholar
  18. Fuchs HV, Renz J (2006) Raumakustische Gestaltung offener Bürolandschaften. Bauphysik 28(5):305–320CrossRefGoogle Scholar
  19. Fuchs HV, Renz J (2008) Multifunktional: Glas-Systemwände optimieren Akustik, Beleuchtung und Klima in offenen Bürolandschaften. Lüftung Klima Heiz Sanit Gebäudetech HLH 59(5):71–75Google Scholar
  20. Fuchs HV, Zha X, Schneider W (1997) Zur Akustik in Büro- und Konferenzräumen. Bauphysik 19(4):105–112Google Scholar
  21. Fuchs HV, Eckoldt D, Hemsing J (1999) Alternative sound absorbers for industrial use: Acousticians on the quest for alternative attenuators. VGB Power Technol 79(3):58–60Google Scholar
  22. Fuchs HV, Zha X, Zhou X, Drotleff H (2001) Creating low-noise environments in communication rooms. Appl Acoust 62(2):1375–1396CrossRefGoogle Scholar
  23. Fuchs HV, Zha X, Drotleff H (2005) Relevance and treatment of the low-frequency domain for noise control and acoustic comfort in rooms. Acustica 91(5):920–927Google Scholar
  24. Fuchs HV, Lamprecht X, Zha X (2011) Zur Steigerung der Wirkung passiver Absorber: Schall in Raumkanten schlucken! Gesundh Ing 132(5):240–250Google Scholar
  25. Fuchs HV, Lamprecht J, Zha X (2012) Lärmbekämpfung in Bildungsstätten: Kanten-Absorber für besseres Verstehen und Lernen. Lärmbekämpfung 6(4):190–200Google Scholar
  26. Gödeke H, Fuchs HV (1998) REAPOR—sintered open-pore glass as a high-strength sound absorber. Glastech Ber Sci Technol 71(9):282–284Google Scholar
  27. ISO 37 45 (2003) Determination of sound power levels of noise sources using sound pressure—precision methods for anechoic and semi-anechoic roomsGoogle Scholar
  28. Kuttruff H (1994) Raumakustik. In: Heckl M, Müller HA (eds) Taschenbuch der Technischen Akustik, Chap. 23. Springer, BerlinGoogle Scholar
  29. Möser M (2007) Technische Akustik. Springer, BerlinGoogle Scholar
  30. Moll W, Moll A (2011) Schallschutz im Wohnungsbau. Ernst&Sohn, BerlinGoogle Scholar
  31. Mechel FP (1994) Schallabsorption. In: Heckl M, Müller HA (eds) Taschenbuch der Technischen Akustik, Chap. 19. Springer, BerlinGoogle Scholar
  32. Niermann A, Sprenger-Pieper A (2009) Akustik an der richtigen Stelle. Trockenbau Akust 26(10):22–26Google Scholar
  33. Potthoff J, Essers U, Eckoldt D, Fuchs HV, Helfer M (1994) Der neue Aeroakustik-Fahrzeugwindkanal der Universität Stuttgart. Automobiltechn. Z. 96 (7/8), pp 438–447Google Scholar
  34. Stüber B, Mühle CH, Fritz KR (1994) Strömungsgeräusche. In: Heckl M, Müller HA (eds) Taschenbuch der Technischen Akustik, Chap. 9. Springer, BerlinGoogle Scholar
  35. VDI-Richtlinie 2081 (2001) Geräuscherzeugung und Lärmminderung in raumlufttechnischen AnlagenGoogle Scholar
  36. Zha X, Fuchs HV, Späh M (1998) Ein neues Konzept für akustische Freifeldräume. Rundfunktechn Mitt 42(3):81–91Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.BerlinGermany

Personalised recommendations