Fletcher’s Filter Methodology as a Soft Selector in Evolutionary Algorithms for Constrained Optimization

  • Ewaryst Rafajłowicz
  • Wojciech Rafajłowicz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7269)

Abstract

Our aim is to propose a new approach to soft selection in evolutionary algorithms for optimization problems with constraints. It is based on the notion of a filter as introduced by Fletcher and his co-workers. The proposed approach occurred to be quite efficient.

Keywords

Evolutionary Algorithm Sequential Quadratic Programming Constraint Violation Goal Function Soft Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aguirre, A.H., et al.: Handling constraints using multiobjective optimization concepts. Int. J. Numer. Meth. Engng. 59, 1989–2017 (2004)MATHCrossRefGoogle Scholar
  2. 2.
    Camponogara, E., Talukdar, S.N.: A genetic algorithm for constrained and multiobjective optimization. In: Alander, J.T. (ed.) 3rd Nordic Workshop on Genetic Algorithms and Their Applications (3NWGA), pp. 49–62. University of Vaasa, Vaasa (1997)Google Scholar
  3. 3.
    Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B.: Evolutionary Algorithms for Solving Multi-Objective Problems. Kluwer Academic Publishers, New York (2002); Fletcher, R,. Leyffer, S.: Nonlinear programming without a penalty function. Math. Program.  91, 239-269 (2002) MATHGoogle Scholar
  4. 4.
    Fletcher, R., Leyffer, S., Toint, P.L.: On the global convergence of a filter-SQP algorithm. SIAM J. Optim. 13, 44–59 (2002)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Fletcher, R., Gould, N.I.M., Leyffer, S., Toint, P.L., Wachter, A.: Global convergence of trust-region SQP-filter algorithms for general nonlinear programming. SIAM J. Optimization 13, 635–659 (2002)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Galar, R.: Handicapped Individua in Evolutionary Processes. Biol. Cybern. 53, 1–9 (1985)MATHCrossRefGoogle Scholar
  7. 7.
    Galar, R.: Evolutionary Search with Soft Selection. Biol. Cybern. 60, 357–364 (1989)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Huang, V.L., Qin, A.K., Suganthan, P.N.: Self-adaptive Differential Evolution Algorithm for Constrained Real-Parameter Optimization. In: 2006 IEEE Congress on Evolutionary Computation Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada, July 16-21, pp. 324–331 (2006)Google Scholar
  9. 9.
    Liang, J.J., Suganthan, P.N.: Dynamic Multi-Swarm Particle Swarm Optimizer with a Novel Constraint-Handling Mechanism. In: 2006 IEEE Congress on Evolutionary Computation Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada, July 16-21, pp. 316–323 (2006)Google Scholar
  10. 10.
    Mezura-Montes, E., Velazquez-Reyes, J., Coello Coello, C.A.: Modified Differential Evolution for Constrained Optimization. In: 2006 IEEE Congress on Evolutionary Computation Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada, July 16-21, pp. 332–339 (2006)Google Scholar
  11. 11.
    Mezura-Montes, E., Coello Coello, C.A.: A Simple Multimembered Evolution Strategy to Solve Constrained Optimization Problems. IEEE Transactions On Evolutionary Computation 9(1), 1–17 (2005)CrossRefGoogle Scholar
  12. 12.
    Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation 4(1), 1–32 (1996)CrossRefGoogle Scholar
  13. 13.
    Rafajłowicz, E., Styczeń, K., Rafajłowicz, W.: A Modified Filter SQP Method As A Tool For Optimal Control of Nonlinear Systems With Spatio-Temporal Dynamics. Int. J. Applied Mathematics and Computer Science (to appear)Google Scholar
  14. 14.
    Richardson, J.T., Palmer, M.R., Liepins, G., Hilliard, M.: Some guidelines for genetic algorithms with penalty functions. In: Schaffer, J.D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms (ICGA 1989), San Mateo, CA, pp. 191–197. George Mason University, Morgan Kaufmann, Los Altos, CA (1989)Google Scholar
  15. 15.
    Takahama, T., Setsuko Sakai, S.: Constrained Optimization by the Constrained Differential Evolution with Gradient-Based Mutation and Feasible Elites. In: 2006 IEEE Congress on Evolutionary Computation Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada, July 16-21, pp. 308–315 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ewaryst Rafajłowicz
    • 1
  • Wojciech Rafajłowicz
    • 1
  1. 1.Institute of Computer Engineering, Control and RoboticsWrocław University of TechnologyWrocławPoland

Personalised recommendations