PARADE: A Massively Parallel Differential Evolution Template for EASEA

  • Jarosław Arabas
  • Ogier Maitre
  • Pierre Collet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7269)


This paper presents an efficient PARAllelization of Differential Evolution on GPU hardware written as an EASEA (EAsy Specification of Evolutionary Algorithms) template for easy reproducibility and re-use. We provide results of experiments to illustrate the relationship between population size and efficiency of the parallel version based on GPU related to the sequential version on the CPU. We also discuss how the population size influences the number of generations to obtain a certain level of result quality.


Benchmark Function General Purpose Graphic Processing Unit Function Evaluation Process Pattern Search Optimization Evolution Template 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Cabido, R., Duarte, A., Montemayor, A., Pantrigo, J.: Differential evolution for global optimization on gpu. In: Int. Conf. on Metaheuritic and Nature Inspired Computing (2010)Google Scholar
  3. 3.
    Gonzalez, S., Barriga, N.: Fully parallel differential evolution. In: GECCO Competition: GPUs for Genetc and Evolutionary Computation (2011)Google Scholar
  4. 4.
    Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation. Advances on Estimation of Distribution Algorithms, pp. 75–102. Springer (2006)Google Scholar
  5. 5.
    Hansen, N.: Compilation of results on the 2005 cec benchmark function set. Tech. rep., Institute of Computational Science ETH Zurich (2006)Google Scholar
  6. 6.
    Maitre, O., Krüger, F., Querry, S., Lachiche, N., Collet, P.: Easea: Specification and execution of evolutionary algorithms on gpgpu. Soft Computing - A Fusion of Foundations, Methodologies and Applications, pp. 1–19 (May 2011); special issue on Evolutionary Computation on General Purpose Graphics Processing UnitsGoogle Scholar
  7. 7.
    Ronkkonen, J., Kukkonen, S., Price, K.: Real-parameter optimization with differential evolution. In: Proc. CEC (2005)Google Scholar
  8. 8.
    Storn, R.: Differential evolution research – trends and open questions. In: Chakraborty, U.K. (ed.) Advances in Differential Evolution, pp. 1–32. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 Special Session on Real Parameter Optimization. Tech. rep., Nanyang Tech. Univ. (2005)Google Scholar
  10. 10.
    Veronese, L., Krohling, R.: Differential evolution algorithm on the GPU with C-CUDA. In: Congr. on Evol. Comp., pp. 1–7 (2010)Google Scholar
  11. 11.
    Zhu, W.: Massively parallel differential evolution — pattern search optimization with graphics hardware acceleration: an investigation on bound constrained optimization problems. J. Glob. Optim. 50, 417–437 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jarosław Arabas
    • 1
  • Ogier Maitre
    • 2
  • Pierre Collet
    • 2
  1. 1.Institute of Electronic SystemsWarsaw University of TechnologyPoland
  2. 2.LSIITUniversity of StrasbourgFrance

Personalised recommendations