Abstract
This paper presents a novel differential evolution algorithm for optimization of state-of-the-art real world industry challenges. The algorithm includes the self-adaptive jDE algorithm with one of its strongest extensions, population reduction, and is now combined with multiple mutation strategies. The two mutation strategies used are run dependent on the population size, which is reduced with growing function evaluation number. The problems optimized reflect several of the challenges in current industry problems tackled by optimization algorithms nowadays. We present results on all of the 22 problems included in the Problem Definitions for a competition on Congress on Evolutionary Computation (CEC) 2011. Performance of the proposed algorithm is compared to two algorithms from the competition, where the average final best results obtained for each test problem on three different number of total function evaluations allowed are compared.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)
Brest, J., Korošec, P., Šilc, J., Zamuda, A., Bošković, B., Maučec, M.S.: Differential evolution and differential ant-stigmergy on dynamic optimisation problems. International Journal of Systems Science (2012), doi:10.1080/00207721.2011.617899
Brest, J., Maučec, M.S.: Population Size Reduction for the Differential Evolution Algorithm. Applied Intelligence 29(3), 228–247 (2008)
Das, S., Abraham, A., Chakraborty, U., Konar, A.: Differential Evolution Using a Neighborhood-based Mutation Operator. IEEE Transactions on Evolutionary Computation 13(3), 526–553 (2009)
Das, S., Suganthan, P.N.: Differential Evolution: A Survey of the State-of-the-art. IEEE Transactions on Evolutionary Computation 15(1), 4–31 (2011)
Das, S., Suganthan, P.N.: Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Real World Optimization Problems. Tech. rep. Dept. of Electronics and Telecommunication Engg., Jadavpur University, India and School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore (2011)
Feoktistov, V.: Differential Evolution: In Search of Solutions Springer Optimization and Its Applications. Springer-Verlag New York, Inc., Secaucus (2006)
Korošec, P., Šilc, J., Filipič, B.: The differential ant-stigmergy algorithm. Information Sciences (2012), doi:10.1016/j.ins.2010.05.002
Korošec, P., Šilc, J.: The continuous differential ant-stigmergy algorithm applied to bound constrained real-world optimization problem. In: The 2011 IEEE Congress on Evolutionary Computation (CEC 2011), New Orelans, USA, June 5-8, pp. 1327–1334 (2011)
Mallipeddi, R., Suganthan, P.N.: Ensemble Differential Evolution Algorithm for CEC2011 Problems. In: The 2011 IEEE Congress on Evolutionary Computation (CEC 2011), p. 68. IEEE Press (2011)
Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Applied Soft Computing 11(2), 1679–1696 (2011)
Mezura-Montes, E., Lopez-Ramirez, B.C.: Comparing bio-inspired algorithms in constrained optimization problems. In: The 2007 IEEE Congress on Evolutionary Computation, September 25-28, pp. 662–669 (2007)
Mininno, E., Neri, F., Cupertino, F., Naso, D.: Compact Differential Evolution. IEEE Transactions on Evolutionary Computation 15(1), 32–54 (2011)
Neri, F., Tirronen, V.: Recent Advances in Differential Evolution: A Survey and Experimental Analysis. Artificial Intelligence Review 33(1-2), 61–106 (2010)
Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Natural Computing. Springer, Berlin (2005)
Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation 13(2), 398–417 (2009)
Storn, R., Price, K.: Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11, 341–359 (1997)
Tušar, T., Korošec, P., Papa, G., Filipič, B., Šilc, J.: A comparative study of stochastic optimization methods in electric motor design. Applied Intelligence 2(27), 101–111 (2007)
Tvrdík, J.: Adaptation in differential evolution: A numerical comparison. Applied Soft Computing 9(3), 1149–1155 (2009)
Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Transactions on Evolutionary Computation 15(1), 55–66 (2011)
Zaharie, D.: Influence of crossover on the behavior of Differential Evolution Algorithms. Applied Soft Computing 9(3), 1126–1138 (2009)
Zamuda, A., Brest, J., Bošković, B., Žumer, V.: Large Scale Global Optimization Using Differential Evolution with Self Adaptation and Cooperative Co-evolution. In: 2008 IEEE World Congress on Computational Intelligence, pp. 3719–3726. IEEE Press (2008)
Zamuda, A., Brest, J., Bošković, B., Žumer, V.: Differential Evolution with Self-adaptation and Local Search for Constrained Multiobjective Optimization. In: IEEE Congress on Evolutionary Computation 2009, pp. 195–202. IEEE Press (2009)
Zamuda, A., Brest, J., Bošković, B., Žumer, V.: Differential Evolution for Parameterized Procedural Woody Plant Models Reconstruction. Applied Soft Computing 11, 4904–4912 (2011)
Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. Trans. Evol. Comp. 13(5), 945–958 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zamuda, A., Brest, J. (2012). Population Reduction Differential Evolution with Multiple Mutation Strategies in Real World Industry Challenges. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Swarm and Evolutionary Computation. EC SIDE 2012 2012. Lecture Notes in Computer Science, vol 7269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29353-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-642-29353-5_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29352-8
Online ISBN: 978-3-642-29353-5
eBook Packages: Computer ScienceComputer Science (R0)