Skip to main content

Population Reduction Differential Evolution with Multiple Mutation Strategies in Real World Industry Challenges

  • Conference paper
Swarm and Evolutionary Computation (EC 2012, SIDE 2012)

Abstract

This paper presents a novel differential evolution algorithm for optimization of state-of-the-art real world industry challenges. The algorithm includes the self-adaptive jDE algorithm with one of its strongest extensions, population reduction, and is now combined with multiple mutation strategies. The two mutation strategies used are run dependent on the population size, which is reduced with growing function evaluation number. The problems optimized reflect several of the challenges in current industry problems tackled by optimization algorithms nowadays. We present results on all of the 22 problems included in the Problem Definitions for a competition on Congress on Evolutionary Computation (CEC) 2011. Performance of the proposed algorithm is compared to two algorithms from the competition, where the average final best results obtained for each test problem on three different number of total function evaluations allowed are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems. IEEE Transactions on Evolutionary Computation 10(6), 646–657 (2006)

    Article  Google Scholar 

  2. Brest, J., Korošec, P., Šilc, J., Zamuda, A., Bošković, B., Maučec, M.S.: Differential evolution and differential ant-stigmergy on dynamic optimisation problems. International Journal of Systems Science (2012), doi:10.1080/00207721.2011.617899

    Google Scholar 

  3. Brest, J., Maučec, M.S.: Population Size Reduction for the Differential Evolution Algorithm. Applied Intelligence 29(3), 228–247 (2008)

    Article  Google Scholar 

  4. Das, S., Abraham, A., Chakraborty, U., Konar, A.: Differential Evolution Using a Neighborhood-based Mutation Operator. IEEE Transactions on Evolutionary Computation 13(3), 526–553 (2009)

    Article  Google Scholar 

  5. Das, S., Suganthan, P.N.: Differential Evolution: A Survey of the State-of-the-art. IEEE Transactions on Evolutionary Computation 15(1), 4–31 (2011)

    Article  Google Scholar 

  6. Das, S., Suganthan, P.N.: Problem Definitions and Evaluation Criteria for CEC 2011 Competition on Real World Optimization Problems. Tech. rep. Dept. of Electronics and Telecommunication Engg., Jadavpur University, India and School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore (2011)

    Google Scholar 

  7. Feoktistov, V.: Differential Evolution: In Search of Solutions Springer Optimization and Its Applications. Springer-Verlag New York, Inc., Secaucus (2006)

    MATH  Google Scholar 

  8. Korošec, P., Šilc, J., Filipič, B.: The differential ant-stigmergy algorithm. Information Sciences (2012), doi:10.1016/j.ins.2010.05.002

    Google Scholar 

  9. Korošec, P., Šilc, J.: The continuous differential ant-stigmergy algorithm applied to bound constrained real-world optimization problem. In: The 2011 IEEE Congress on Evolutionary Computation (CEC 2011), New Orelans, USA, June 5-8, pp. 1327–1334 (2011)

    Google Scholar 

  10. Mallipeddi, R., Suganthan, P.N.: Ensemble Differential Evolution Algorithm for CEC2011 Problems. In: The 2011 IEEE Congress on Evolutionary Computation (CEC 2011), p. 68. IEEE Press (2011)

    Google Scholar 

  11. Mallipeddi, R., Suganthan, P.N., Pan, Q.K., Tasgetiren, M.F.: Differential evolution algorithm with ensemble of parameters and mutation strategies. Applied Soft Computing 11(2), 1679–1696 (2011)

    Article  Google Scholar 

  12. Mezura-Montes, E., Lopez-Ramirez, B.C.: Comparing bio-inspired algorithms in constrained optimization problems. In: The 2007 IEEE Congress on Evolutionary Computation, September 25-28, pp. 662–669 (2007)

    Google Scholar 

  13. Mininno, E., Neri, F., Cupertino, F., Naso, D.: Compact Differential Evolution. IEEE Transactions on Evolutionary Computation 15(1), 32–54 (2011)

    Article  Google Scholar 

  14. Neri, F., Tirronen, V.: Recent Advances in Differential Evolution: A Survey and Experimental Analysis. Artificial Intelligence Review 33(1-2), 61–106 (2010)

    Article  Google Scholar 

  15. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization. Natural Computing. Springer, Berlin (2005)

    MATH  Google Scholar 

  16. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation 13(2), 398–417 (2009)

    Article  Google Scholar 

  17. Storn, R., Price, K.: Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization 11, 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tušar, T., Korošec, P., Papa, G., Filipič, B., Šilc, J.: A comparative study of stochastic optimization methods in electric motor design. Applied Intelligence 2(27), 101–111 (2007)

    Google Scholar 

  19. Tvrdík, J.: Adaptation in differential evolution: A numerical comparison. Applied Soft Computing 9(3), 1149–1155 (2009)

    Article  Google Scholar 

  20. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation strategies and control parameters. IEEE Transactions on Evolutionary Computation 15(1), 55–66 (2011)

    Article  MathSciNet  Google Scholar 

  21. Zaharie, D.: Influence of crossover on the behavior of Differential Evolution Algorithms. Applied Soft Computing 9(3), 1126–1138 (2009)

    Article  Google Scholar 

  22. Zamuda, A., Brest, J., Bošković, B., Žumer, V.: Large Scale Global Optimization Using Differential Evolution with Self Adaptation and Cooperative Co-evolution. In: 2008 IEEE World Congress on Computational Intelligence, pp. 3719–3726. IEEE Press (2008)

    Google Scholar 

  23. Zamuda, A., Brest, J., Bošković, B., Žumer, V.: Differential Evolution with Self-adaptation and Local Search for Constrained Multiobjective Optimization. In: IEEE Congress on Evolutionary Computation 2009, pp. 195–202. IEEE Press (2009)

    Google Scholar 

  24. Zamuda, A., Brest, J., Bošković, B., Žumer, V.: Differential Evolution for Parameterized Procedural Woody Plant Models Reconstruction. Applied Soft Computing 11, 4904–4912 (2011)

    Article  Google Scholar 

  25. Zhang, J., Sanderson, A.C.: JADE: adaptive differential evolution with optional external archive. Trans. Evol. Comp. 13(5), 945–958 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zamuda, A., Brest, J. (2012). Population Reduction Differential Evolution with Multiple Mutation Strategies in Real World Industry Challenges. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Swarm and Evolutionary Computation. EC SIDE 2012 2012. Lecture Notes in Computer Science, vol 7269. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29353-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29353-5_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29352-8

  • Online ISBN: 978-3-642-29353-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics