Application of Neural Networks in Assessing Changes around Implant after Total Hip Arthroplasty

  • Arkadiusz Szarek
  • Marcin Korytkowski
  • Leszek Rutkowski
  • Rafał Scherer
  • Janusz Szyprowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7268)


Bone and joint diseases afflict more and more younger people. This is due to the work habits, quality and intensity of life, diet and individual factors. Hip arthroplasty is a surgery to remove the pain and to allow the patient to return to normal functioning in society. Endoprosthesoplasty brings the desired effect, but the life span of contemporary endoprosthesis is still not satisfactory. Clinical studies have shown that the introduction of the implant to the bone causes a number of changes within the bone – implant contact. The correct prediction of changes around the implant allows to plan the surgery and to identify hazardous areas where bone decalcification and loss of primary stability in implant can occur.


Neural Network Fuzzy System Soft Computing Hazardous Area Work Habit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Inc., New York (1995)Google Scholar
  2. 2.
    Canalis, E.: Regulation of Bone Remodeling: Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, An Official Publication of The American Society for Bone and Mineral Research. Amer. Society for Bone & Mineral, 33-31 (2009)Google Scholar
  3. 3.
    Hagan, M.T., Menhaj, M.B.: Training feed forward network with the Marquardt algorithm. IEEE Trans. on Neural Net. 5(6), 989–993 (1994)CrossRefGoogle Scholar
  4. 4.
    Jankowski, N., Grąbczewski, K.: Universal Meta-Learning Architecture and Algorithms. In: Jankowski, N., Duch, W., Grąbczewski, K. (eds.) Meta-Learning in Computational Intelligence. SCI, vol. 358, pp. 1–76. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Marciniak, J.: Biomaterials. Silesian University of Technology Press, Gliwice (2002)Google Scholar
  6. 6.
    Nowicki, R., Rutkowski, L.: Rough-Neuro-Fuzzy System for Classification. In: Proceedings of Fuzzy Systems and Knowledge Discovery, Singapore, pp. 463–466 (2002)Google Scholar
  7. 7.
    Nowicki, R., Rutkowski, L.: Soft Techniques for Bayesian Classification. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing. AISC, pp. 537–544. Springer Physica-Verlag (2003)Google Scholar
  8. 8.
    Pauwels, F.: Biomechanics of the Locomotor Apparatus, Berlin (1976)Google Scholar
  9. 9.
    Rutkowski, L., Cpałka, K.: A general approach to neuro - fuzzy systems. In: Proceedings of the 10th IEEE International Conference on Fuzzy Systems, Melbourne, December 2-5, vol. 3, pp. 1428–1431 (2001)Google Scholar
  10. 10.
    Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Control and Cybernetics 31(2), 297–308 (2002)zbMATHGoogle Scholar
  11. 11.
    Starczewski, J., Rutkowski, L.: Connectionist Structures of Type 2 Fuzzy Inference Systems. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 634–642. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Starczewski, J., Rutkowski, L.: Interval type 2 neuro-fuzzy systems based on interval consequents. In: Rutkowski, L., Kacprzyk, J. (eds.) Neural Networks and Soft Computing, pp. 570–577. Physica-Verlag, Springer-Verlag Company, Heidelberg, New York (2003)Google Scholar
  13. 13.
    Szarek, A.: Hip Joint Replacement in Biomechanical and Clinical Approach. Rusnauckniga, Belgorod (2010)Google Scholar
  14. 14.
    Szarek, A.: Chosen aspects of biomaterials, Publishing house Education and Science s.r.o. - Rusnauckniga, Praga-Belgorod (2011)Google Scholar
  15. 15.
    Williams, D.F.: Definitions in biomaterials. Elsevier, Amsterdam (1987)Google Scholar
  16. 16.
    Zalasiński, M., Cpałka, K.: A new method of on-line signature verification using a flexible fuzzy one-class classifier, pp. 38–53. Academic Publishing House EXIT (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Arkadiusz Szarek
    • 1
  • Marcin Korytkowski
    • 2
    • 3
  • Leszek Rutkowski
    • 2
    • 4
  • Rafał Scherer
    • 2
  • Janusz Szyprowski
    • 5
  1. 1.Institute of Metal Working and Forming, Quality Engineering and BioengineeringCzȩstochowa University of TechnologyPoland
  2. 2.Department of Computer EngineeringCzȩstochowa University of TechnologyCzȩstochowaPoland
  3. 3.Olsztyn Academy of Computer Science and ManagementOlsztynPoland
  4. 4.SWSPiZ Academy of ManagementInstitute of Information TechnologyŁódźPoland
  5. 5.Orthopedics and Traumatic Surgery Department of NMP Voivodship Specialist HospitalCzȩstochowaPoland

Personalised recommendations