Full Body Motion Tracking in Monocular Images Using Particle Swarm Optimization

  • Bogusław Rymut
  • Tomasz Krzeszowski
  • Bogdan Kwolek
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7267)


The estimation of full body pose in monocular images is a very difficult problem. In 3D-model based motion tracking the challenges arise as at least one-third of degrees of freedom of the human pose that needs to be recovered is nearly unobservable in any given monocular image. In this paper, we deal with high dimensionality of the search space through estimating the pose in a hierarchical manner using Particle Swarm Optimization. Our method fits the projected body parts of an articulated model to detected body parts at color images with support of edge distance transform. The algorithm was evaluated quantitatively through the use of the motion capture data as ground truth.


Particle Swarm Optimization Motion Capture Data Human Body Model Monocular Image Human Motion Capture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agarwal, A., Triggs, B.: Recovering 3D human pose from monocular images. IEEE Trans. Pattern Anal. Mach. Intell. 28, 44–58 (2006)CrossRefGoogle Scholar
  2. 2.
    Arsic, D., Lyutskanov, A., Rigoll, G., Kwolek, B.: Multi camera person tracking applying a graph-cuts based foreground segmentation in a homography framework. In: IEEE Int. Workshop on Performance Evaluation of Tracking and Surveillance, pp. 30–37. IEEE Press, Piscataway (2009)Google Scholar
  3. 3.
    Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for bayesian filtering. Statistics and Computing 10(1), 197–208 (2000)CrossRefGoogle Scholar
  4. 4.
    Gavrila, D.M., Davis, L.S.: 3-D model-based tracking of humans in action: a multi-view approach. In: Proc. of the Conf. on Computer Vision and Pattern Recognition (CVPR 1996), pp. 73–80. IEEE Computer Society, Washington, DC (1996)CrossRefGoogle Scholar
  5. 5.
    John, V., Trucco, E., Ivekovic, S.: Markerless human articulated tracking using hierarchical Particle Swarm Optimisation. Image Vis. Comput. 28, 1530–1547 (2010)CrossRefGoogle Scholar
  6. 6.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. of IEEE Int. Conf. on Neural Networks, pp. 1942–1948. IEEE Press, Piscataway (1995)CrossRefGoogle Scholar
  7. 7.
    Kovac, J., Peer, P., Solina, F.: Human skin color clustering for face detection. In: Int. Conf. on Computer as a Tool, EUROCON 2003, vol. 2, pp. 144–148 (2003)Google Scholar
  8. 8.
    Krzeszowski, T., Kwolek, B., Wojciechowski, K.: GPU-Accelerated Tracking of the Motion of 3D Articulated Figure. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010. LNCS, vol. 6374, pp. 155–162. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding 104(2-3), 90–126 (2006)CrossRefGoogle Scholar
  10. 10.
    Mori, G., Ren, X., Efros, A.A., Malik, J.: Recovering human body configurations: Combining segmentation and recognition. In: Proc. of the Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 326–333. IEEE Comp. Society (2004)Google Scholar
  11. 11.
    Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A.: Challenges of Human Behavior Understanding. In: Salah, A.A., Gevers, T., Sebe, N., Vinciarelli, A. (eds.) HBU 2010. LNCS, vol. 6219, pp. 1–12. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Schmidt, J., Fritsch, J., Kwolek, B.: Kernel particle filter for real-time 3D body tracking in monocular color images. In: IEEE Int. Conf. on Face and Gesture Rec., Southampton, UK, pp. 567–572. IEEE Computer Society Press (2006)Google Scholar
  13. 13.
    Shakhnarovich, G., Viola, P., Darrell, T.: Fast pose estimation with parameter-sensitive hashing. In: Proc. of IEEE Int. Conf. on Computer Vision, ICCV 2003, vol. 2, pp. 750–757. IEEE Computer Society, Washington, DC (2003)CrossRefGoogle Scholar
  14. 14.
    Sminchisescu, C., Triggs, B.: Kinematic jump processes for monocular 3D human tracking. In: Proc. of the IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, CVPR 2003, pp. 69–76. IEEE Computer Society (2003)Google Scholar
  15. 15.
    Zhang, X., Hu, W., Wang, X., Kong, Y., Xie, N., Wang, H., Ling, H., Maybank, S.: A swarm intelligence based searching strategy for articulated 3D human body tracking. In: IEEE Workshop on 3D Information Extraction for Video Analysis and Mining in conjuction with CVPR, pp. 45–50. IEEE Press, Piscataway (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bogusław Rymut
    • 1
  • Tomasz Krzeszowski
    • 1
  • Bogdan Kwolek
    • 1
  1. 1.Polish-Japanese Institute of Information TechnologyWarszawaPoland

Personalised recommendations