Abstract
A common task in the field of document digitization for information retrieval is separating text and non-text elements. In this paper an innovative approach of recognizing patterns is presented. Statistical and structural features in arbitrary number are combined into a rating tree, which is an adapted decision tree. Such a tree is trained for character patterns to distinguish text elements from non-text elements. First experiments in a binarization application have shown promising results in significant reduction of false-positives without producing false-negatives.
Keywords
- Feature Vector
- Object Recognition
- Child Node
- Markov Chain Monte Carlo Method
- Agglomerative Cluster
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
He, D., Liang, S., Fang, Y.: A Multi-Descriptor, Multi-Nearest Neighbor Approach for Image Classification. In: Huang, D.-S., Zhao, Z., Bevilacqua, V., Figueroa, J.C. (eds.) ICIC 2010. LNCS, vol. 6215, pp. 515–523. Springer, Heidelberg (2010)
Block, M., Rojas, R.: Local Contrast Segmentation to Binarize Images. In: Third International Conference on Digital Society (ICDS 2009), Cancun/Mexiko, vol. 1(1), pp. 294–299. IEEE Computer Society (2009)
Boiman, O., Shechtman, E., Irani, M.: In defense of nearest-neighbor based image classication. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8 (2008)
Wu, X., Kumar, V., Quinlan, J.R., Ghosh, J., et al.: Top 10 Algorithms in Data Mining. Knowledge and Information Systems 14(1), 1–37 (2008)
Kalos, M.H., Whitlock, P.A.: Monte Carlo Methods. Wiley-VCH (2008)
Al-Taani, A.T., Maen, H.: Recognition of On-line Handwritten Arabic Digits Using Structural Features and Transition Network. Informatica 32, 275–281 (2008)
Walter, B., Bala, K., Kulkarni, M., Pingali, K.: Fast Agglomerative Clustering for Rendering. In: IEEE Symposium on Interactive Ray Tracing (RT), pp. 81–86 (2008)
Zhang, Q., Izquierdo, E.: A Multi-feature Optimization Approach to Object-Based Image Classification. In: Sundaram, H., Naphade, M., Smith, J.R., Rui, Y. (eds.) CIVR 2006. LNCS, vol. 4071, pp. 310–319. Springer, Heidelberg (2006)
Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 2161–2168. IEEE Computer Society, Washington, DC (2006)
Bajramovic, F., Mattern, F., Butko, N., Denzler, J.: A Comparison of Nearest Neighbor Search Algorithms for Generic Object Recognition. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2006. LNCS, vol. 4179, pp. 1186–1197. Springer, Heidelberg (2006)
Al-Taani, A.T.: An Efficient Feature Extraction Algorithm for the Recognition of Handwritten Arabic Digits. International Journal of Computational Intelligence 2 (2005)
Fei-Fei, L., Perona, P.: A Bayesian Hierarchical Model for Learning Natural Scene Categories. In: Proc. of IEEE Computer Vision and Pattern Recognition, pp. 524–531 (2005)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60, 91–110 (2004)
Sezgin, M., Sankur, B.: Survey over image thresholding techniques and quatitative performance evaluation. Journal of Electronic Imaging 13(1), 146–165 (2004)
Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vision 57, 137–154 (2004)
Andrieu, C., de Freitas, N., Doucet, A., Jordan, M.I.: An Introduction to MCMC for Machine Learning. Machine Learning 50(1), 5–43 (2003)
Elgammal, A.M., Ismail, M.A.: A Graph-Based Segmentation and Feature-Extraction Framework for Arabic Text Recognition. In: Sixth International Conference on Document Analysis and Recognition (ICDAR 2001), pp. 622–626 (2001)
Olszewski, R.T.: Generalized Feature Extraction for Structural Pattern Recognition in Time-Series Data. PhD thesis, University Pittsburgh (2001)
Behnke, S., Pfister, M., Rojas, R.: Recognition of Handwritten Digits using Structural Information. In: Proceedings ICNN 1997, pp. 1391–1396 (1997)
Lebourgeois, F., Henry, J.: An evolutive ocr system based on continuous learning. In: IEEE Workshop on Applications of Computer Vision, pp. 272–277 (1996)
Hong, T., Lam, S.W., Hull, J.J., Srihari, S.N.: The design of a nearest-neighbor classier and its use for japanese character recognition. In: Proceedings of the Third International Conference on Document Analysis and Recognition (ICDAR 1995), vol. 1, pp. 270–273. IEEE Computer Society, Washington, DC (1995)
Neal, R.M.: Probabilistic inference using markov chain monte carlo methods. In: Technical Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto, 144 pages (1993)
Rousseeuw, P.J.: Least median of squares regression. Journal of the American Statistical Association 79(388), 871–880 (1984)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Lindner, M., Block, M., Rojas, R. (2012). Object Recognition Using Summed Features Classifier. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2012. Lecture Notes in Computer Science(), vol 7267. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29347-4_63
Download citation
DOI: https://doi.org/10.1007/978-3-642-29347-4_63
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29346-7
Online ISBN: 978-3-642-29347-4
eBook Packages: Computer ScienceComputer Science (R0)