Application of Hierarchical Classifier to Minimal Synchronizing Word Problem

  • Igor T. Podolak
  • Adam Roman
  • Dariusz Jędrzejczyk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7267)

Abstract

We present a practical application of Hierarchical Classifier with overlapping clusters to the problem of finding the minimal synchronizing word length of a given finite automaton. We compare our approach with a single neural network model. Using a certain representation of automaton as the classifier’s input we improve HC efficiency and we are able to analyze the relation between particular automata features and minimal synchronizing lengths.

Keywords

Hide Neuron Binary Decision Diagram Automaton Tree Conformance Testing Hierarchical Classifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Broy, M., Jonsson, B., Katoen, J.-P., Leucker, M., Pretschner, A. (eds.): Model-Based Testing of Reactive Systems. LNCS, vol. 3472, pp. 5–33. Springer, Heidelberg (2005)MATHCrossRefGoogle Scholar
  2. 2.
    Černý, J., Pirická, A., Rosenauerová, B.: On directable automata. Kybernetika 7(4), 289–298 (1971)MathSciNetMATHGoogle Scholar
  3. 3.
    Deshmukh, R.G., Hawat, G.N.: An algorithm to determine shortest length distinguishing, homing, and synchronizing sequences for sequential machines. In: Proc. Southcon 1994 Conference, pp. 496–501 (1994)Google Scholar
  4. 4.
    Eppstein, D.: Reset sequences for monotonic automata. SIAM Journal on Computing 19(3), 500–510 (1990)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Fukada, A., Nakata, A., Kitamichi, J., Higashino, T., Cavalli, A.: A conformance testing method for communication protocols modeled as concurrent DFSMs. Treatment of non-observable non-determinism. In: Proc. IEEE 15th Int. Conf. on Information Networking, pp. 155–162 (2001)Google Scholar
  6. 6.
    Kari, J.: Synchronizing and Stability of Finite Automata. Journal of Universal Computer Science 8, 270–277 (2002)MathSciNetGoogle Scholar
  7. 7.
    Klyachko, A.A., Rystsov, I., Spivak, M.A.: An extremal combinatorial problem associated with the bound on the length of a synchronizing word in an automaton. Kybernetika 2, 16–20 (1987)MathSciNetGoogle Scholar
  8. 8.
    Natarajan, B.K.: An Algorithmic Approach to the Automated Design of Part Orienters. In: Proc. IEEE Symp. Foundations of Computer Science (FOCS 1986), pp. 132–142 (1986)Google Scholar
  9. 9.
    Olschewski, J., Ummels, M.: The Complexity of Finding Reset Words in Finite Automata. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 568–579. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Pixley, C., Jeong, S.W., Hachtel, G.D.: Exact calculation of synchronizing sequences based on binary decision diagrams. In: Proc. ACM/IEEE 29th Design Automation Conference, pp. 620–623 (1992)Google Scholar
  11. 11.
    Podolak, I.T.: Hierarchical Classifier with Overlapping Class Groups. Expert Systems with Applications 34(1), 673–682 (2008)CrossRefGoogle Scholar
  12. 12.
    Podolak, I.T., Roman, A.: A new notion of weakness in classification theory. Advances in Intelligent and Soft Computing 57, 239–245 (2009)CrossRefGoogle Scholar
  13. 13.
    Podolak, I.T., Bartocha, K.: A Hierarchical Classifier with Growing Neural Gas Clustering. In: Kolehmainen, M., Toivanen, P., Beliczynski, B. (eds.) ICANNGA 2009. LNCS, vol. 5495, pp. 283–292. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Podolak, I.T., Roman, A.: Fusion of supervised and unsupervised training methods for a multi-class classification problem. Pattern Analysis and Applications 14(4), 395–413 (2011)CrossRefGoogle Scholar
  15. 15.
    Pomeranz, I., Reddy, S.M.: On synchronizing sequences and test sequence partitioning. In: Proc. IEEE 16th VLSI Test Symp., pp. 158–167 (1998)Google Scholar
  16. 16.
    Ponce, A.M., Csopaki, G., Tarnay, K.: Formal specification of conformance testing documents for communication protocols. In: 5th IEEE Int. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC 1994), vol. 4, pp. 1167–1172 (1994)Google Scholar
  17. 17.
    Roman, A.: Genetic Algorithm for Synchronization. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 684–695. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Trahtman, A.N.: The road coloring problem. Israel Journal of Mathematics 1(172), 51–60 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Trahtman, A.N.: An Efficient Algorithm Finds Noticeable Trends and Examples Concerning the Černy Conjecture. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 789–800. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Ananichev, D.S., Volkov, M.V.: Synchronizing Monotonic Automata. In: Ésik, Z., Fülöp, Z. (eds.) DLT 2003. LNCS, vol. 2710, pp. 270–382. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Volkov, M.V.: Exponents of labeled digraphs and synchronizing automata. In: First Russian-Finish Symposium on Discrete Mathematics (2011) (not published)Google Scholar
  22. 22.
    Zhao, Y., Liu, Y., Guo, X., Zhang, C.: Conformance testing for IS-IS protocol based on E-LOTOS. In: IEEE Int. Conf. on Information Theory and Information Security (ICITIS 2010), pp. 54–57 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Igor T. Podolak
    • 1
  • Adam Roman
    • 1
  • Dariusz Jędrzejczyk
    • 1
  1. 1.Institute of Computer ScienceJagiellonian UniversityPoland

Personalised recommendations