Advertisement

On an Enhanced Method for a More Meaningful Pearson’s Correlation Coefficient between Intuitionistic Fuzzy Sets

  • Eulalia Szmidt
  • Janusz Kacprzyk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7267)

Abstract

This paper is a continuation of our previous works on correlation coefficients of Atanassov’s intuitionistic fuzzy sets (A-IFSs). The Pearson’s coefficient we discuss here yields the strength of relationship between the A-IFSs and also indicates the direction of correlation (positive or negative). The proposed correlation coefficient takes into account all three terms describing an A-IFS (membership values, non-membership values, and the hesitation margins).

Keywords

Fuzzy Number Fuzzy Data Correlation Component Intelligent Data Analysis Pima Indian Diabetes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Atanassov, K.: Intuitionistic Fuzzy Sets. VII ITKR Session. Sofia (Centr. Sci.-Techn. Libr. of Bulg. Acad. of Sci., 1697/84) (1983) (in Bulgarian)Google Scholar
  2. 2.
    Atanassov, K.: Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems 20, 87–96 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Atanassov, K.: Intuitionistic Fuzzy Sets: Theory and Applications. Springer, Heidelberg (1999)zbMATHGoogle Scholar
  4. 4.
    Bustince, H., Burillo, P.: Correlation of interval-valued intuitionistic fuzzy sets. Fuzzy Sets and Systems 74, 237–244 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Bustince, H., Mohedano, V., Barrenechea, E., Pagola, M.: Image thresholding using intuitionistic fuzzy sets. In: Issues in the Representation and Processing of Uncertain and Imprecise Information. In: Atanassov, K., Kacprzyk, J., Krawczak, M., Szmidt, E. (eds.) Fuzzy Sets, Intuitionistic Fuzzy Sets, Generalized Nets, and Related Topics. EXIT, Warsaw (2005)Google Scholar
  6. 6.
    Bustince, H., Mohedano, V., Barrenechea, E., Pagola, M.: An algorithm for calculating the threshold of an image representing uncertainty through A-IFSs. In: IPMU 2006, pp. 2383–2390 (2006)Google Scholar
  7. 7.
    Chiang, D.-A., Lin, N.P.: Correlation of fuzzy sets. Fuzzy Sets and Systems 102, 221–226 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gersternkorn, T., Manko, J.: Correlation of intuitionistic fuzzy sets. Fuzzy Sets and Systems 44, 39–43 (1991)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hong, D.H., Hwang, S.Y.: Correlation of intuitionistic fuzzy sets in probability spaces. Fuzzy Sets and Systems 75, 77–81 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Hong, D.H., Hwang, S.Y.: A note on the correlation of fuzzy numbers. Fuzzy Sets and Systems 79, 401–402 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Hung, W.L.: Using statistical viewpoint in developing correlation of intuitionistic fuzzy sets. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 9(4), 509–516 (2001)zbMATHGoogle Scholar
  12. 12.
    Hung, W.L., Wu, J.W.: Correlation of intuitionistic fuzzy sets by centroid method. Information Sciences 144, 219–225 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Liu, S.-T., Kao, C.: Fuzzy measures for correlation coefficient of fuzzy numbers. Fuzzy Sets and Systems 128, 267–275 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Quinlan, J.R.: Induction of decision trees. Machine Learning 1, 81–106 (1986)Google Scholar
  15. 15.
    Rodgers, J.L., Alan Nicewander, W.A.: Thirteen Ways to Look at the Correlation Coefficient. The American Statistician 42(1), 59–66 (1988)CrossRefGoogle Scholar
  16. 16.
    Szmidt, E., Baldwin, J.: Intuitionistic Fuzzy Set Functions, Mass Assignment Theory, Possibility Theory and Histograms. In: 2006 IEEE World Congress on Computational Intelligence, pp. 237–243 (2006)Google Scholar
  17. 17.
    Szmidt, E., Kacprzyk, J.: Remarks on some applications of intuitionistic fuzzy sets in decision making. Notes on IFS 2(3), 22–31 (1996c)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Szmidt, E., Kacprzyk, J.: On measuring distances between intuitionistic fuzzy sets. Notes on IFS 3(4), 1–13 (1997)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Szmidt, E., Kacprzyk, J.: Group Decision Making under Intuitionistic Fuzzy Preference Relations. In: IPMU 1998, pp. 172–178 (1998)Google Scholar
  20. 20.
    Szmidt, E., Kacprzyk, J.: Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems 114(3), 505–518 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Szmidt, E., Kacprzyk, J.: On Measures on Consensus Under Intuitionistic Fuzzy Relations. In: IPMU 2000, pp. 1454–1461 (2000)Google Scholar
  22. 22.
    Szmidt, E., Kacprzyk, J.: Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems 118(3), 467–477 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Szmidt, E., Kacprzyk, J.: Analysis of Consensus under Intuitionistic Fuzzy Preferences. In: Int. Conf. in Fuzzy Logic and Technology. De Montfort Univ. Leicester, UK, pp. 79–82 (2001)Google Scholar
  24. 24.
    Szmidt, E., Kacprzyk, J.: Analysis of Agreement in a Group of Experts via Distances Between Intuitionistic Fuzzy Preferences. In: 9th Int. Conf. IPMU 2002, pp. 1859–1865 (2002a)Google Scholar
  25. 25.
    Szmidt, E., Kacprzyk, J.: An Intuitionistic Fuzzy Set Based Approach to Intelligent Data Analysis (an application to medical diagnosis). In: Abraham, A., Jain, L., Kacprzyk, J. (eds.) Recent Advances in Intelligent Paradigms and Applications, pp. 57–70. Springer, Heidelberg (2002b)Google Scholar
  26. 26.
    Szmidt, E., Kacprzyk, J.: An Intuitionistic Fuzzy Set Based Approach to Intelligent Data Analysis (an application to medical diagnosis). In: Abraham, A., Jain, L., Kacprzyk, J. (eds.) Recent Advances in Intelligent Paradigms and Applications, pp. 57–70. Springer, Heidelberg (2002c)Google Scholar
  27. 27.
    Szmidt, E., Kacprzyk, J.: Distances Between Intuitionistic Fuzzy Sets: Straightforward Approaches may not work. In: IEEE IS 2006, pp. 716–721 (2006)Google Scholar
  28. 28.
    Szmidt, E., Kacprzyk, J.: An Application of Intuitionistic Fuzzy Set Similarity Measures to a Multi-criteria Decision Making Problem. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Żurada, J.M. (eds.) ICAISC 2006. LNCS (LNAI), vol. 4029, pp. 314–323. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    Szmidt, E., Kacprzyk, J.: Some Problems with Entropy Measures for the Atanassov Intuitionistic Fuzzy Sets. In: Masulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS (LNAI), vol. 4578, pp. 291–297. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Szmidt, E., Kacprzyk, J.: A New Similarity Measure for Intuitionistic Fuzzy Sets: Straightforward Approaches may not work. In: 2007 IEEE Conf. on Fuzzy Systems, pp. 481–486 (2007a)Google Scholar
  31. 31.
    Szmidt, E., Kacprzyk, J.: A new approach to ranking alternatives expressed via intuitionistic fuzzy sets. In: Ruan, D., et al. (eds.) Computational Intelligence in Decision and Control, pp. 265–270. World Scientific (2008)Google Scholar
  32. 32.
    Szmidt, E., Kacprzyk, J.: Amount of Information and Its Reliability in the Ranking of Atanassov’s Intuitionistic Fuzzy Alternatives. In: Rakus-Andersson, E., Yager, R.R., Ichalkaranje, N., Jain, L.C. (eds.) Recent Advances in Decision Making. SCI, vol. 222, pp. 7–19. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  33. 33.
    Szmidt, E., Kacprzyk, J.: Ranking of Intuitionistic Fuzzy Alternatives in a Multi-criteria Decision Making Problem. In: Proceedings of the Conference: NAFIPS 2009, Cincinnati, USA, June 14-17. IEEE (2009) ISBN: 978-1-4244-4577-6Google Scholar
  34. 34.
    Szmidt, E., Kacprzyk, J.: Dealing with typical values via Atanassov’s intuitionistic fuzzy sets. International Journal of General Systems 39(5), 489–596 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Szmidt, E., Kacprzyk, J.: Correlation of Intuitionistic Fuzzy Sets. In: Hüllermeier, E., Kruse, R., Hoffmann, F. (eds.) IPMU 2010. LNCS, vol. 6178, pp. 169–177. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  36. 36.
    Szmidt, E., Kukier, M.: Classification of Imbalanced and Overlapping Classes using Intuitionistic Fuzzy Sets. In: IEEE IS 2006, London, pp. 722–727 (2006)Google Scholar
  37. 37.
    Szmidt, E., Kukier, M.: A New Approach to Classification of Imbalanced Classes via Atanassov’s Intuitionistic Fuzzy Sets. In: Wang, H.-F. (ed.) Intelligent Data Analysis: Developing New Methodologies Through Pattern Discovery and Recovery, pp. 85–101. Idea Group (2008)Google Scholar
  38. 38.
    Szmidt, E., Kukier, M.: Atanassov’s intuitionistic fuzzy sets in classification of imbalanced and overlapping classes. In: Chountas, P., Petrounias, I., Kacprzyk, J. (eds.) Intelligent Techniques and Tools for Novel System Architectures. SCI, pp. 455–471. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  39. 39.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Zeng, W., Li, H.: Correlation coefficient of intuitionistic fuzzy sets. Journal of Industrial Engineering International 3(5), 33–40 (2007)Google Scholar
  41. 41.

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Eulalia Szmidt
    • 1
    • 2
  • Janusz Kacprzyk
    • 1
    • 2
  1. 1.Systems Research InstitutePolish Academy of SciencesWarsawPoland
  2. 2.Warsaw School of Information TechnologyWarsawPoland

Personalised recommendations