Defuzzification Functionals Are Homogeneous, Restrictive Additive and Normalized Functions

  • Witold Kosiński
  • Agnieszka Rosa
  • Dorota Cendrowska
  • Katarzyna Węgrzyn-Wolska
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7267)


Defuzzification operators, that play the main role when dealing with fuzzy controllers and fuzzy inference systems, are discussed for convex as well for ordered fuzzy numbers. Three characteristic conditions are formulated for them. It is shown that most of known defuzzification functionals meet these requirements. Some approximation methods for determining of the functionals are given and then applied.


Membership Function Fuzzy Number Fuzzy Controller Fuzzy Inference System Extension Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alexiewicz, A.: Functional Analysis. PWN, Warszawa (1969) (in Polish)Google Scholar
  2. 2.
    Buckley, J.J., Eslami, E.: An Introduction to Fuzzy Logic and Fuzzy Sets. Physica-Verlag, Heidelberg (2005)Google Scholar
  3. 3.
    Chen, G., Pham, T.T.: Introduction to Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems. CRS Press LLC, Washington (2001)Google Scholar
  4. 4.
    Drewniak, J.: Fuzzy numbers. In: Chojcan, J., Łęski, J. (eds.) Fuzzy Sets and Their Applications, pp. 103–129. Silesian Technical University Publishers, Gliwice (2001)Google Scholar
  5. 5.
    Koleśnik, R., Kosiński, W., Prokopowicz, P., Frischmuth, K.: On algebra of ordered fuzzy numbers. In: Atanassov, K.T., Hryniewicz, O., Kacprzyk, J. (eds.) Soft Computing – Foundations and Theoretical Aspects, pp. 291–302. Academic Press House EXIT, Warszawa (2004)Google Scholar
  6. 6.
    Kosiński, W.: On Defuzzyfication of Ordered Fuzzy Numbers. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 326–331. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Kosiński, W.: On fuzzy number calculus. Int. J. Appl. Math. Comput. Sci. 16(1), 51–57 (2006)MathSciNetGoogle Scholar
  8. 8.
    Kosiński, W.: Evolutionary algorithm determining defuzzyfication operators. Engineering Applications of Artificial Intelligence 20(5), 619–627 (2007), CrossRefGoogle Scholar
  9. 9.
    Kosiński, W.: Optimization with fuzzy data via evolutionary algorithms. In: International Conference on Numerical Analysis and Applied Mathematics, ICNAAM 2010, September 19-25. American Institute of Physics, Rhodes Greece (2010)Google Scholar
  10. 10.
    Kosiński, W., Kacprzak, M.: Fuzzy implications on lattice of ordered fuzzy numbers. In: Atanssov, K.T., Baczyński, M., Drewniak, J., Kacprzyk, J., Krawczyk, M., Szmidt, E., Wygralek, M., Zadrożny, S. (eds.) Recent Advances in Fuzzy Sets, Intuitionistic Fuzzy sets, Generalized Nets and Related Topics. Foundations, vol. I, pp. 95–110. IBS PAN - SRI PAS, Warszawa (2010)Google Scholar
  11. 11.
    Kosiński, W., Markowska-Kaczmar, U.: An evolutionary algorithm determining a defuzzyfication functional. Task Quarterly 11(1-2), 47–58 (2007)Google Scholar
  12. 12.
    Kosiński, W., Piasecki, W., Wilczyńska-Sztyma, D.: On Fuzzy Rules and Defuzzification Functionals for Ordered Fuzzy Numbers. In: Burczyński, T., Cholewa, W., Moczulski, W. (eds.) Proc. of AI-Meth 2009 Conference, Gliwice. AI-METH Series, pp. 161–178 (November 2009)Google Scholar
  13. 13.
    Kosiński, W., Prokopowicz, P.: Algebra of fuzzy numbers. Applied Mathematics. Mathematics for the Society 5/46, 37–63 (2004) (in Polish) Google Scholar
  14. 14.
    Kosiński, W., Prokopowicz, P., Kacprzak, D.: Fuzziness – Representation of Dynamic Changes by Ordered Fuzzy Numbers. In: Seising, R. (ed.) Views on Fuzzy Sets and Systems from Different Perspectives. STUDFUZZ, vol. 243, pp. 485–508. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Kosiński, W., Prokopowicz, P., Ślęzak, D.: Fuzzy numbers with algebraic operations: algorithmic approach. In: Kłopotek, M., Wierzchoń, S.T., Michalewicz, M. (eds.) Proc. of Intelligent Information Systems, IIS 2002, Sopot, June 3-6, pp. 311–320. Physica Verlag, Heidelberg (2002)Google Scholar
  16. 16.
    Kosiński, W., Prokopowicz, P., Ślęzak, D.: On algebraic operations on fuzzy reals. In: Rutkowski, L., Kacprzyk, J. (eds.) Proc. of the Sixth Int. Conference on Neural Network and Soft Computing, Advances in Soft Computing, Zakopane, Poland, June 11-15, pp. 54–61. Physica-Verlag, Heidelberg (2003)Google Scholar
  17. 17.
    Kosiński, W., Prokopowicz, P., Ślęzak, D.: Ordered fuzzy numbers. Bulletin of the Polish Academy of Sciences 51(3), 327–338 (2003)Google Scholar
  18. 18.
    Kosiński, W., Prokopowicz, P., Ślęzak, D.: On algebraic operations on fuzzy numbers. In: Kłopotek, M., Wierzchoń, S.T., Trojanowski, K. (eds.) Intelligent Information Processing and Web Mining, Proc. of Int. IIS: IIPWM 2003, Conference held in Zakopane, Poland, June 2-5, pp. 353–362. Physica-Verlag, Heidelberg (2003)Google Scholar
  19. 19.
    Kosiński, W., Prokopowicz, P., Ślęzak, D.: Calculus with Fuzzy Numbers. In: Bolc, L., Michalewicz, Z., Nishida, T. (eds.) IMTCI 2004. LNCS (LNAI), vol. 3490, pp. 21–28. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Kosiński, W., Węgrzyn - Wolska, K., Borzymek, P.: Evolutionary algorithm in fuzzy data problem. In: Kita, E. (ed.) Evolutionary Algorithms, pp. 201–218. InTech (2011)Google Scholar
  21. 21.
    Kosiński, W., Wilczyńska-Sztyma, D.: Defuzzification and implication within ordered fuzzy numbers. In: IEEE World Congress on Computational Intelligence, WCCI 2010, CCIB, Barcelona, July 18-23, pp. 1073–1079 (2010)Google Scholar
  22. 22.
    Kościeński, K.: Modul of step ordered fuzzy numbers in control of material point motion. Engineering Thesis, PJWSTK, Warszawa (2010) (in Polish)Google Scholar
  23. 23.
    Nguyen, H.T.: A note on the extension principle for fuzzy sets. J. Math. Anal. Appl. 64, 369–380 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Prokopowicz, P.: Algorithmisation of operations on fuzzy numbers and its applications. Ph.D. Thesis, IPPT PAN, Warszawa (2005) (in Polish)Google Scholar
  25. 25.
    Prokopowicz, P.: Using ordered fuzzy numbers arithmetic. In: Cader, A., Rutkowski, L., Tadeusiewicz, R., Zurada, J. (eds.) Proc. of the 8th International Conference on Artificial Intelligence and Soft Computing, Fuzzy Control in Artificial Intelligence and Soft Computing, June 25-29, pp. 156–162. Academic Publishing House EXIT, Warszawa (2006)Google Scholar
  26. 26.
    Rosa, A.: Modelling using orderd fuzzy numbers. Engineering Thesis, WMFiT, Kazimierz-Wielki University, Bydgoszcz (2011) (in Polish)Google Scholar
  27. 27.
    Van Leekwijck, W., Kerre, E.E.: Defuzzification: criteria and classification. Fuzzy Sets and Systems 108, 159–178 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Wilczyńska, D.: On control aspects within ordered fuzzy numbers in MATLAB environment. Master Thesis, WMFiT, Kazimierz-Wielki University, Bydgoszcz (2007) (in Polish)Google Scholar
  29. 29.
    Yager, R.R., Filev, D.P.: Essentials of Fuzzy Modeling and Control. John Wiley & Sons, New York (1994)Google Scholar
  30. 30.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Part I. Information Sciences 8, 199–249 (1975)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Witold Kosiński
    • 1
  • Agnieszka Rosa
    • 2
  • Dorota Cendrowska
    • 1
  • Katarzyna Węgrzyn-Wolska
    • 3
  1. 1.Polish-Japanese Institute of Information TechnologyWarsawPoland
  2. 2.Kazimierz-Wielki UniversityBydgoszczPoland
  3. 3.École Supérieure d’Ingénieurs en Informatique et Génie de, Télécommunication (ESIGETEL)France

Personalised recommendations