Reoptimization of Some Maximum Weight Induced Hereditary Subgraph Problems

  • Nicolas Boria
  • Jérôme Monnot
  • Vangelis Th. Paschos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7256)


The reoptimization issue studied in this paper can be described as follows: given an instance I of some problem Π, an optimal solution OPT for Π in I and an instance I′ resulting from a local perturbation of I that consists of insertions or removals of a small number of data, we wish to use OPT in order to solve Π in I’, either optimally or by guaranteeing an approximation ratio better than that guaranteed by an ex nihilo computation and with running time better than that needed for such a computation. We use this setting in order to study weighted versions of several representatives of a broad class of problems known in the literature as maximum induced hereditary subgraph problems. The main problems studied are max independent set, max k-colorable subgraph and max split subgraph under vertex insertions and deletions.


Polynomial Time Approximation Ratio Steiner Tree Initial Graph Split Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Archetti, C., Bertazzi, L., Speranza, M.: Reoptimizing the traveling salesman problem. Networks 42(3), 154–159 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Archetti, C., Bertazzi, L., Speranza, M.: Reoptimizing the 0-1 knapsack problem. Discrete Applied Mathematics 158(17), 1879–1887 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Ausiello, G., Bonifaci, V., Escoffier, B.: Complexity and approximation in reoptimization. In: CiE 2007: Logic and Computation and Logic in the Real World (2007)Google Scholar
  4. 4.
    Ausiello, G., Escoffier, B., Monnot, J., Paschos, V.T.: Reoptimization of Minimum and Maximum Traveling Salesman’s Tours. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 196–207. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Bilò, D., Böckenhauer, H.-J., Hromkovič, J., Královič, R., Mömke, T., Widmayer, P., Zych, A.: Reoptimization of Steiner Trees. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 258–269. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Bilò, D., Widmayer, P., Zych, A.: Reoptimization of Weighted Graph and Covering Problems. In: Bampis, E., Skutella, M. (eds.) WAOA 2008. LNCS, vol. 5426, pp. 201–213. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Böckenhauer, H.J., Forlizzi, L., Hromkovic, J., Kneis, J., Kupke, J., Proietti, G., Widmayer, P.: On the approximability of tsp on local modifications of optimally solved instances. Algorithmic Operations Research 2(2), 83–93 (2007)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Böckenhauer, H.J., Hromkovic, J., Královic, R., Mömke, T., Rossmanith, P.: Reoptimization of steiner trees: Changing the terminal set. Theor. Comput. Sci. 410(36), 3428–3435 (2009)zbMATHCrossRefGoogle Scholar
  9. 9.
    Böckenhauer, H.-J., Hromkovič, J., Mömke, T., Widmayer, P.: On the Hardness of Reoptimization. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 50–65. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Böckenhauer, H.J., Komm, D.: Reoptimization of the metric deadline TSP. J. Discrete Algorithms 8(1), 87–100 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Boppana, R., Halldórsson, M.: Approximating maximum independent sets by excluding subgraphs. BIT Numerical Mathematics 32(2), 180–196 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Boria, N., Monnot, J., Paschos, V.T.: Reoptimization of maximum weight induced hereditary subgraph problems. Cahier du LAMSADE 311, LAMSADE, Université Paris-Dauphine (June 2001)Google Scholar
  13. 13.
    Boria, N., Paschos, V.: Fast reoptimization for the minimum spanning tree problem. Journal of Discrete Algorithms 8(3), 296–310 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Escoffier, B., Milanic, M., Paschos, V.: Simple and fast reoptimizations for the steiner tree problem. Algorithmic Operations Research 4(2), 86–94 (2009)MathSciNetGoogle Scholar
  15. 15.
    Feige, U.: Approximating maximum clique by removing subgraphs. SIAM Journal on Discrete Mathematics 18, 219 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Lund, C., Yannakakis, M.: The Approximation of Maximum Subgraph Problems. In: Lingas, A., Carlsson, S., Karlsson, R. (eds.) ICALP 1993. LNCS, vol. 700, pp. 40–51. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  17. 17.
    Robertson, N., Seymour, P.: Graph minors. xx. wagner’s conjecture. J. Comb. Theory, Ser. B 92(2), 325–357 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. In: Proc. STOC 2006, pp. 681–690 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nicolas Boria
    • 1
  • Jérôme Monnot
    • 1
  • Vangelis Th. Paschos
    • 1
    • 2
  1. 1.LAMSADE, CNRS UMR 7243 and Université Paris-DauphineFrance
  2. 2.Institut Universitaire de FranceFrance

Personalised recommendations