Advertisement

The Feedback Arc Set Problem with Triangle Inequality Is a Vertex Cover Problem

  • Monaldo Mastrolilli
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7256)

Abstract

We consider the (precedence constrained) Minimum Feedback Arc Set problem with triangle inequalities on the weights, which finds important applications in problems of ranking with inconsistent information. We present a surprising structural insight showing that the problem is a special case of the minimum vertex cover in hypergraphs with edges of size at most 3. This result leads to combinatorial approximation algorithms for the problem and opens the road to studying the problem as a vertex cover problem.

Keywords

Approximation Algorithm Triangle Inequality Vertex Cover Valid Inequality Single Machine Schedule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aharoni, R., Holzman, R., Krivelevich, M.: On a theorem of lovász on covers in tau-partite hypergraphs. Combinatorica 16(2), 149–174 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ailon, N.: Aggregation of partial rankings, p-ratings and top-m lists. Algorithmica 57(2), 284–300 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Ailon, N., Avigdor-Elgrabli, N., Liberty, E.: An improved algorithm for bipartite correlation clustering. CoRR, abs/1012.3011 (2010)Google Scholar
  4. 4.
    Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: Ranking and clustering. J. ACM 55(5) (2008)Google Scholar
  5. 5.
    Ambühl, C., Mastrolilli, M.: Single machine precedence constrained scheduling is a vertex cover problem. Algorithmica 53(4), 488–503 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ambühl, C., Mastrolilli, M., Mutsanas, N., Svensson, O.: Scheduling with Precedence Constraints of Low Fractional Dimension. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 130–144. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Ambühl, C., Mastrolilli, M., Mutsanas, N., Svensson, O.: Precedence constraint scheduling and connections to dimension theory of partial orders. Bulletin of the European Association for Theoretical Computer Science (EATCS) 95, 45–58 (2008)Google Scholar
  8. 8.
    Ambühl, C., Mastrolilli, M., Svensson, O.: Approximating Precedence-Constrained Single Machine Scheduling by Coloring. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 15–26. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Ambühl, C., Mastrolilli, M., Svensson, O.: Inapproximability results for sparsest cut, optimal linear arrangement, and precedence constraint scheduling. In: Proceedings of FOCS 2007, pp. 329–337 (2007)Google Scholar
  10. 10.
    Bansal, N., Khot, S.: Optimal Long-Code test with one free bit. In: Foundations of Computer Science (FOCS), pp. 453–462 (2009)Google Scholar
  11. 11.
    Correa, J.R., Schulz, A.S.: Single machine scheduling with precedence constraints. Mathematics of Operations Research 30(4), 1005–1021 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Even, G., Naor, J., Rao, S., Schieber, B.: Divide-and-conquer approximation algorithms via spreading metrics. J. ACM 47(4), 585–616 (2000)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Even, G., Naor, J., Schieber, B., Sudan, M.: Approximating minimum feedback sets and multicuts in directed graphs. Algorithmica 20(2), 151–174 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Grötschel, M., Jünger, M., Reinelt, G.: Acyclic subdigraphs and linear orderings: Polytopes, facets, and a cutting plane algorithm. Graphs and Orders, 217–264 (1985)Google Scholar
  15. 15.
    Guruswami, V., Manokaran, R., Raghavendra, P.: Beating the random ordering is hard: Inapproximability of maximum acyclic subgraph. In: FOCS, pp. 573–582 (2008)Google Scholar
  16. 16.
    Hall, L.A., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to minimize average completion time: off-line and on-line algorithms. Mathematics of Operations Research 22, 513–544 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kann, V.: On the Approximability of NP-Complete Optimization Problems. PhD thesis, Department of Numerical Analysis and Computing Science, Royal Institute of Technology, Stockholm (1992)Google Scholar
  18. 18.
    Karp, R.: Reducibility Among Combinatorial Problems, pp. 85–103. Plenum Press, NY (1972)Google Scholar
  19. 19.
    Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: STOC, pp. 95–103 (2007)Google Scholar
  20. 20.
    Krivelevich, M.: Approximate set covering in uniform hypergraphs. J. Algorithms 25(1), 118–143 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kuhn, F., Mastrolilli, M.: Vertex Cover in Graphs with Locally Few Colors. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 498–509. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequencing and scheduling: Algorithms and complexity. In: Graves, S.C., Rinnooy Kan, A.H.G., Zipkin, P. (eds.) Handbooks in Operations Research and Management Science, vol. 4, pp. 445–552. North-Holland (1993)Google Scholar
  23. 23.
    Lempel, A., Cederbaum, I.: Minimum feedback arc and vertex sets of a directed graph. IEEE Trans. Circuit Theory 4(13), 399–403 (1966)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Luby, M., Nisan, N.: A parallel approximation algorithm for positive linear programming. In: STOC, pp. 448–457 (1993)Google Scholar
  25. 25.
    Mastrolilli, M.: The feedback arc set problem with triangle inequality is a vertex cover problem. CoRR, abs/1111.4299 (2011)Google Scholar
  26. 26.
    Pardalos, P., Du, D.: Handbook of Combinatorial Optimization: Supplement, vol. 1. Springer, Heidelberg (1999)Google Scholar
  27. 27.
    Plotkin, A., Shmoys, D., Tardos, E.: Fast Approximation Algorithms for Fractional Packing and Covering Problems. Mathematics of Operation Research 20 (1995)Google Scholar
  28. 28.
    Schuurman, P., Woeginger, G.J.: Polynomial time approximation algorithms for machine scheduling: ten open problems. Journal of Scheduling 2(5), 203–213 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Seymour, P.D.: Packing directed circuits fractionally. Combinatorica 15(2), 281–288 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Trotter, W.T.: Combinatorics and Partially Ordered Sets: Dimension Theory. Johns Hopkins Series in the Mathematical Sciences. The Johns Hopkins University Press (1992)Google Scholar
  31. 31.
    van Zuylen, A., Hegde, R., Jain, K., Williamson, D.P.: Deterministic pivoting algorithms for constrained ranking and clustering problems. In: SODA, pp. 405–414 (2007)Google Scholar
  32. 32.
    van Zuylen, A., Williamson, D.P.: Deterministic pivoting algorithms for constrained ranking and clustering problems. Math. Oper. Res. 34(3), 594–620 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Monaldo Mastrolilli
    • 1
  1. 1.IDSIALuganoSwitzerland

Personalised recommendations