Advertisement

Cache Me If You Can: Capacitated Selfish Replication Games

  • Ragavendran Gopalakrishnan
  • Dimitrios Kanoulas
  • Naga Naresh Karuturi
  • C. Pandu Rangan
  • Rajmohan Rajaraman
  • Ravi Sundaram
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7256)

Abstract

Motivated by peer-to-peer (P2P) networks and content delivery applications, we study Capacitated Selfish Replication (CSR) games, which involve nodes on a network making strategic choices regarding the content to replicate in their caches. Selfish replication games were introduced in [6], who analyzed the uncapacitated case leaving the capacitated version as an open direction.

In this work, we study pure Nash equilibria of CSR games with an emphasis on hierarchical networks, which have been extensively used to model communication costs of content delivery and P2P systems. The best result from previous work on CSR games for hierarchical networks [19,23] is the existence of a Nash equilibrium for a (slight generalization of a) 1-level hierarchy when the utility function is based on the sum of the costs of accessing the replicated objects in the network. Our main result is an exact polynomial-time algorithm for finding a Nash Equilibrium in any hierarchical network using a new technique which we term “fictional players”.We show that this technique extends to a general framework of natural preference orders, orders that are entirely arbitrary except for two constraints - “Nearer is better” and “Independence of irrelevant alternatives”. This axiomatic treatment captures a vast class of utility functions and even allows for nodes to simultaneously have utility functions of completely different functional forms.

Using our axiomatic framework, we next study CSR games on arbitrary networks and delineate the boundary between intractability and effective computability in terms of the network structure, object preferences, and number of objects. In addition to hierarchical networks, we show the existence of equilibria for general undirected networks when either object preferences are binary or there are two objects. For general CSR games, however, we show that it is NP-hard to determine whether equilibria exist. We also show that the existence of equilibria in strongly connected networks with two objects and binary object preferences can be solved in polynomial time via a reduction to the well-studied evencycle problem.

Keywords

Nash Equilibrium Object Preference Hierarchical Network Undirected Network Pure Nash Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Angel, E., Bampis, E., Pollatos, G.G., Zissimopoulos, V.: Optimal data placement on networks with constant number of clients. CoRR, abs/1004.4420 (2010)Google Scholar
  2. 2.
    Arrow, K.: Social Choice and Individual Values. Yale University Press (1951)Google Scholar
  3. 3.
    Baev, I.D., Rajaraman, R., Swamy, C.: Approximation algorithms for data placement problems. SIAM J. Comput. 38(4), 1411–1429 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Byers, J.W., Luby, M., Mitzenmacher, M., Rege, A.: A digital fountain approach to reliable distribution of bulk data. In: SIGCOMM 1998, pp. 56–67 (1998)Google Scholar
  5. 5.
    Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player Nash equilibria. Journal of the ACM (JACM) 56(3) (2009)Google Scholar
  6. 6.
    Chun, B.-G., Chaudhuri, K., Wee, H., Barreno, M., Papadimitriou, C.H., Kubiatowicz, J.: Selfish caching in distributed systems: a game-theoretic analysis. In: PODC, pp. 21–30 (2004)Google Scholar
  7. 7.
    Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. In: STOC ACM, pp. 71–78 (2006)Google Scholar
  8. 8.
    Devanur, N.R., Garg, N., Khandekar, R., Pandit, V., Saberi, A., Vazirani, V.V.: Price of Anarchy, Locality Gap, and a Network Service Provider Game. In: Deng, X., Ye, Y. (eds.) WINE 2005. LNCS, vol. 3828, pp. 1046–1055. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Fabrikant, A., Luthra, A., Maneva, E., Papadimitriou, C.H., Shenker, S.: On a network creation game. In: PODC, pp. 347–351 (2003)Google Scholar
  10. 10.
    Garey, M., Johnson, D.: Computers and intractability. Freeman Press (1979)Google Scholar
  11. 11.
    Goemans, M.X., Li, L., Mirrokni, V.S., Thottan, M.: Market sharing games applied to content distribution in ad hoc networks. IEEE Journal on Selected Areas in Communications 24(5), 1020–1033 (2006)CrossRefGoogle Scholar
  12. 12.
    Gopalakrishnan, R., Kanoulas, D., Karuturi, N.N., Rangan, C.P., Rajaraman, R., Sundaram, R.: Cache me if you can: Capacitated selfish replication in networks. CoRR abs/1007.2694 (2011)Google Scholar
  13. 13.
    Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? Journal of Computer and System Sciences 37(1), 79–100 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Karger, D., Lehman, E., Leighton, T., Levine, M., Lewin, D., Panigrahy, R.: Consistent hashing and random trees: Distributed caching protocols for relieving hot spots on the world wide web. In: STOC ACM, pp. 654–663 (1997)Google Scholar
  15. 15.
    Korupolu, M., Plaxton, C.G., Rajaraman, R.: Placement algorithms for hierarchical cooperative caching. Journal of Algorithms 38, 260–302 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Korupolu, M.R., Dahlin, M.: Coordinated placement and replacement for large-scale distributed caches. IEEE Trans. Knowl. Data Eng. 14(6), 1317–1329 (2002)CrossRefGoogle Scholar
  17. 17.
    Koutsoupias, E., Papadimitriou, C.: Worst-Case Equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Laoutaris, N., Smaragdakis, G., Oikonomou, K., Stavrakakis, I., Bestavros, A.: Distributed placement of service facilities in large-scale networks. In: INFOCOM, pp. 2144–2152 (2007)Google Scholar
  19. 19.
    Laoutaris, N., Telelis, O., Zissimopoulos, V., Stavrakakis, I.: Distributed selfish replication. IEEE Trans. Parallel Distrib. Syst. 17(12), 1401–1413 (2006)CrossRefGoogle Scholar
  20. 20.
    Leff, A., Wolf, J.L., Yu, P.S.: Replication algorithms in a remote caching architecture. IEEE Trans. Parallel Distrib. Syst. 4(11), 1185–1204 (1993)CrossRefGoogle Scholar
  21. 21.
    Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press (2007)Google Scholar
  22. 22.
    Papadimitriou, C.H.: On the complexity of the parity argument and other inefficient proofs of existence. JCSS 48(3), 498–532 (1994)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Pollatos, G.G., Telelis, O., Zissimopoulos, V.: On the social cost of distributed selfish content replication. Networking, 195–206 (2008)Google Scholar
  24. 24.
    Robertson, N., Seymour, P.D., Thomas, R.: Permanents, pfaffian orientations, and even directed circuits. Annals of Mathematics, 929–975 (1999)Google Scholar
  25. 25.
    Shokrollahi, A.: Raptor codes. IEEE Trans. Inf. Theory, 2551–2567 (2006)Google Scholar
  26. 26.
    Tewari, R., Dahlin, M., Vin, H.M., Kay, J.S.: Design considerations for distributed caching on the internet. In: ICDCS, pp. 273–284 (1999)Google Scholar
  27. 27.
    Wolfson, O., Jajodia, S., Huang, Y.: An adaptive data replication algorithm. ACM Transactions on Database Systems 22, 255–314 (1997)CrossRefGoogle Scholar
  28. 28.
    Younger, D.H.: Graphs with interlinked directed circuits. In: Proceedings of Midwestern Symposium on Circuit Theory, vol. 2, pp. XVI2.1–XVI2.7 (1973)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ragavendran Gopalakrishnan
    • 1
  • Dimitrios Kanoulas
    • 2
  • Naga Naresh Karuturi
    • 3
  • C. Pandu Rangan
    • 4
  • Rajmohan Rajaraman
    • 2
  • Ravi Sundaram
    • 2
  1. 1.California Institute of TechnologyUSA
  2. 2.Northeastern UniversityUSA
  3. 3.GoogleIndia
  4. 4.IIT MadrasIndia

Personalised recommendations