Pseudorandomness of a Random Kronecker Sequence
Abstract
We study two randomness measures for the celebrated Kronecker sequence \({\cal S}(\alpha)\) formed by the fractional parts of the multiples of a real α. The first measure is the well-known discrepancy, whereas the other one, the Arnold measure, is less popular. Both describe the behaviour of the truncated sequence \({\cal S}_T(\alpha)\) formed with the first T terms, for T → ∞. We perform a probabilistic study of the pseudorandomness of the sequence \({\cal S}(\alpha)\) (discrepancy and Arnold measure), and we give estimates of their mean values in two probabilistic settings : the input α may be either a random real or a random rational. The results exhibit strong similarities between the real and rational cases; they also show the influence of the number T of truncated terms, via its relation to the continued fraction expansion of α.
Keywords
Probabilistic Setting Randomness Measure Real Case Transfer Operator Dirichlet SeriesPreview
Unable to display preview. Download preview PDF.
References
- 1.Arnold, V. I.: Arnold’s problems. Springer Phasis (2004)Google Scholar
- 2.Arnold, V.I.: Topology and statistics of formulae of arithmetics. Russian Math. Surveys 58, 637–664 (2003)MathSciNetCrossRefGoogle Scholar
- 3.Baladi, V., Vallée, B.: Euclidean algorithms are Gaussian. J. Number Theory 110, 331–386 (2005)MathSciNetMATHCrossRefGoogle Scholar
- 4.Beck, J.: Inevitable Randomness in Discrete Mathematics. University Lecture Series, vol. 49. American Mathematical Society, Providence (2009)MATHGoogle Scholar
- 5.Behnke, H.: Theorie der Diophantischen Approximationen. Hamb. Abh. 3, 261–318 (1924)CrossRefGoogle Scholar
- 6.Cesaratto, E., Clément, J., Daireaux, B., Lhote, L., Maume-Deschamps, V., Vallée, B.: Regularity of the Euclid Algorithm: application to the analysis of fast gcd Algorithms. Journal of Symbolic Computation 44, 726–767 (2009)MathSciNetMATHCrossRefGoogle Scholar
- 7.Cesaratto, E., Plagne A., Vallée, B.: On the non-randomness of modular arithmetic progressions: a solution to a problem of V. I. Arnold. In: Proceedings of the 4th Colloquium on Mathematics and Computer Science: Algorithms, Trees, Combinatorics and Probability. Discrete Mathematics and Theoretical Computer Science, vol. AG, pp 271-288. DMTCS, Nancy (2006)Google Scholar
- 8.Cesaratto, E., Vallée, B.: Hausdorff dimension of real numbers with bounded digit averages. Acta Arith. 125, 115–162 (2006)MathSciNetMATHCrossRefGoogle Scholar
- 9.Cesaratto, E., Vallée, B.: Small quotients in Euclidean Algorithms. Ramanujan Journal 24, 183–218 (2011)MATHCrossRefGoogle Scholar
- 10.Daudé, H., Flajolet, P., Vallée, B.: An average-case analysis of the Gaussian algorithm for lattice Reduction. Combinatorics, Probability and Computing 6, 397–433 (1997)MathSciNetMATHCrossRefGoogle Scholar
- 11.Drmota, M., Tichy, R.: Sequences, Discrepancies and Applications. Lecture Notes in Mathematics, vol. 1651. Springer, Berlin (1997)MATHGoogle Scholar
- 12.Dolgopyat, D.: On decay of correlations in Anosov flows. Ann. of Math. 147(2), 357–390 (1998)MathSciNetMATHCrossRefGoogle Scholar
- 13.Flajolet, P., Vallée, B.: Continued fraction algorithms, functional operators, and structure constants. Theoretical Computer Science 194(1-2), 1–34 (1998)MathSciNetMATHCrossRefGoogle Scholar
- 14.Kuipers, L., Niederreiter, H.: Uniform distribution of sequences. John Wiley and Sons, New York (1974)MATHGoogle Scholar
- 15.Knuth, D.E.: The art of Computer Programming, 3rd edn., vol. 2. Addison Wesley (1998)Google Scholar
- 16.Lhote, L., Vallée, B.: Gaussian laws for the main parameters of the Euclid Algorithms. Algorithmica 50, 497–554 (2008)MathSciNetMATHCrossRefGoogle Scholar
- 17.Ruelle, D.: Thermodynamic formalism. Addison Wesley (1978)Google Scholar
- 18.Van Ravenstein, T.: On the discrepancy of the sequence formed from multiples of an irrational number. Bull. Austral. Math. Soc. 31, 329–338 (1985)MathSciNetMATHCrossRefGoogle Scholar
- 19.Sós, V.T.: On the distribution mod 1 of the sequence nα. Ann. Univ. Sci. Budapest Eötvös Sect. Math. 1, 127–134 (1958)MATHGoogle Scholar
- 20.Surányi, J.: Über die Anordnung der Vielfachen einer reellen Zahl mod 1. Ann. Univ. Sci. Budapest Eötvös Sect. Math. 1, 107–111 (1958)MATHGoogle Scholar
- 21.Świerczkowski, S.: On successive settings of an arc on the circumference of a circle. Fund. Math. 46, 187–189 (1959)MathSciNetMATHGoogle Scholar
- 22.Schmidt, W.M.: Irregularities of distribution VII. Acta Arith. 21, 45–50 (1972)MathSciNetMATHGoogle Scholar
- 23.Schoissengeier, J.: On the discrepancy of (n α). Acta Arith. 44, 241–279 (1984)MathSciNetMATHGoogle Scholar
- 24.Tenenbaum, G.: Introduction à la théorie analytique et probabiliste des nombres. Cours Spécialisés 1, SMF (1995)Google Scholar
- 25.Vallée, B.: Opérateurs de Ruelle-Mayer généralisés et analyse en moyenne des algorithmes de Gauss et d’Euclide. Acta Arith. 81, 101–144 (1997)MathSciNetMATHGoogle Scholar
- 26.Vallée, B.: Dynamique des fractions continues à contraintes périodiques. Journal of Number Theory 72, 183–235 (1998)MathSciNetMATHCrossRefGoogle Scholar
- 27.Vallée, B.: Euclidean dynamics. Discrete Contin. Dyn. Syst. 15, 281–352 (2006)MathSciNetMATHCrossRefGoogle Scholar