Advertisement

Testing Gravity Using the Growth of Large Scale Structure in the Universe

  • Elise Jennings
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Dark energy and modified gravity models can produce similar expansion histories for the Universe, which can be derived from the Hubble parameter measured, for example, using Type Ia SN. The expansion history of the Universe in dark energy and modified gravity cosmologies can be described using an effective equation of state. If two models have the same equation of state, as a consequence, it is not possible to distinguish between them using measurements of the expansion history alone. However, cosmic structures are expected to collapse under gravity at different rates in the dark energy and modified gravity cosmologies.

Keywords

Dark Energy Linear Theory Linear Growth Rate Quintessence Model Expansion History 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bertschinger E, Zukin P (2008) Phys Rev D 78:024015ADSCrossRefGoogle Scholar
  2. Brans C, Dicke RH (1961) Phys Rev 124:925MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. Chan KC, Chu M (2007) Phys Rev D 75:083521MathSciNetADSCrossRefGoogle Scholar
  4. Clifton T, Barrow JD, Scherrer RJ (2005) Phys Rev D 71:123526ADSCrossRefGoogle Scholar
  5. Cole S, Fisher KB, Weinberg DH (1994) Mon Notices Royal Astron Soc 267:785ADSGoogle Scholar
  6. Cui W, Zhang P, Yang X (2010) Phys Rev D 81:103528ADSCrossRefGoogle Scholar
  7. degl’Innocenti S, Fiorentini G, Raffelt GG, Ricci B, Weiss A (1996) A&A, 312:345Google Scholar
  8. Feldman HA, Kaiser N, Peacock JA (1994) Astrophys J 426:23ADSCrossRefGoogle Scholar
  9. Jennings E, Baugh CM, Pascoli S (2010) Mon Notices Royal Astron Soc 1572Google Scholar
  10. Jordan P (1949) Nature 164:637ADSzbMATHCrossRefGoogle Scholar
  11. Komatsu E et al (2009) Astrophys J Suppl Ser 180:330ADSCrossRefGoogle Scholar
  12. Laszlo I, Bean R (2008) Phys Rev D 77:024048ADSCrossRefGoogle Scholar
  13. Lewis A, Bridle S (2002) Phys Rev D 66:103511ADSCrossRefGoogle Scholar
  14. Li B, Mota DF, Barrow JD (2010) ArXiv e-printsGoogle Scholar
  15. Linder EV (2003) Phys Rev Lett 90:091301ADSCrossRefGoogle Scholar
  16. Linder EV (2005) Phys Rev D 72:043529ADSCrossRefGoogle Scholar
  17. Lue A, Scoccimarro R, Starkman GD (2004) Phys Rev D 69:124015ADSCrossRefGoogle Scholar
  18. Markwardt CB (2009) Astron Soc Pac Conf Ser 411:251ADSGoogle Scholar
  19. Peacock JA, Dodds SJ (1994) Mon Notices Royal Astron Soc 267:1020ADSGoogle Scholar
  20. Pettorino V, Baccigalupi C (2008) Phys Rev D 77:103003ADSCrossRefGoogle Scholar
  21. Sánchez AG, Crocce M, Cabré A, Baugh CM, Gaztañaga E (2009) Mon Notices Royal Astron Soc 400:1643ADSCrossRefGoogle Scholar
  22. Scoccimarro R (2004) Phys Rev D 70:083007ADSCrossRefGoogle Scholar
  23. Teller E (1948) Phys Rev 73:801ADSCrossRefGoogle Scholar
  24. Thorsett SE (1996) Phys Rev Lett 77:1432ADSCrossRefGoogle Scholar
  25. Umezu K, Ichiki K, Yahiro M (2005) Phys Rev D 72:044010ADSCrossRefGoogle Scholar
  26. Williams JG, Newhall XX, Dickey JO (1996) Phys Rev D 53:6730ADSCrossRefGoogle Scholar
  27. Zahn O, Zaldarriaga M (2003) Phys Rev D 67:063002ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Elise Jennings
    • 1
  1. 1.Durham UniversityDurhamUK

Personalised recommendations