Simulations of Quintessential Cold Dark Matter

  • Elise Jennings
Part of the Springer Theses book series (Springer Theses)


Quintessence models of dark energy are studied as a viable alternative to the cosmological constant and feature an evolving scalar field which dominates the energy budget today causing accelerated expansion. In this chapter we present three stages of N-body simulations of structure formation in quintessence models. Each stage progressively relaxes the assumptions made and brings us closer to a full physical model. In the first stage, the initial conditions for each quintessence cosmology are generated using a \(\Lambda \)CDM linear theory power spectrum and the background cosmological parameters are the best fit values assuming a \(\Lambda \)CDM cosmology.


Dark Matter Power Spectrum Dark Energy Dark Energy Model Dark Energy Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albrecht AJ, Skordis C (2000) Phys Rev Lett 84:2076ADSCrossRefGoogle Scholar
  2. Alimi J, Fuzfa A, Boucher V, Rasera Y, Courtin J, Corasaniti P (2009) MNRAS 771:405Google Scholar
  3. Angulo R, Baugh CM, Frenk CS, Lacey CG (2008) MNRAS 383:755ADSCrossRefGoogle Scholar
  4. Bardeen JM, Bond JR, Kaiser N, Szalay AS (1986) ApJ 304:15ADSCrossRefGoogle Scholar
  5. Barreiro T, Copeland EJ, Nunes NJ (2000) Phys Rev D 61:127301ADSCrossRefGoogle Scholar
  6. Bassett BA, Kunz M, Silk J, Ungarelli C (2002) MNRAS 336:1217ADSCrossRefGoogle Scholar
  7. Bassett BA, Corasaniti PS, Kunz M (2004) ApJ 617:L1ADSCrossRefGoogle Scholar
  8. Baugh CM, Efstathiou G (1994) MNRAS 270:183ADSGoogle Scholar
  9. Baumgart DJ, Fry JN (1991) ApJ 375:25ADSCrossRefGoogle Scholar
  10. Bean R, Hansen SH, Melchiorri A (2001) Phys Rev D 64:103508ADSCrossRefGoogle Scholar
  11. Brax P, Martin J (1999) Phys Lett B 468:40MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. Caldwell RR, Doran M, Mueller CM, Schafer G, Wetterich C (2003) ApJ 591:L75ADSCrossRefGoogle Scholar
  13. Copeland EJ, Nunes NJ, Rosati F (2000) Phys Rev D 62:123503ADSCrossRefGoogle Scholar
  14. Corasaniti PS (2004) astro-ph/0401517Google Scholar
  15. Corasaniti PS, Copeland EJ (2003) Phys Rev D 67:063521ADSCrossRefGoogle Scholar
  16. Corasaniti PS, Kunz M, Parkinson D, Copeland EJ, Bassett BA (2004) Phys Rev D 70:083006ADSCrossRefGoogle Scholar
  17. Crocce M, Fosalba P, Castander FJ, Gaztanaga E (2009) MNRAS 403:1353ADSCrossRefGoogle Scholar
  18. Doran M, Robbers G (2006) JCAP 0606:026MathSciNetADSCrossRefGoogle Scholar
  19. Doran M, Robbers G, Wetterich C (2007) Phys Rev D 75:023003ADSCrossRefGoogle Scholar
  20. Efstathiou G, Rees MJ (1988) MNRAS 230:5PADSGoogle Scholar
  21. Eke VR, Cole S, Frenk CS (1996) MNRAS 282:263ADSGoogle Scholar
  22. Eke VR, Navarro JF, Steinmetz M (2001) ApJ 554:114ADSCrossRefGoogle Scholar
  23. Fang W, Hu W, Lewis A (2008) Phys Rev D 78:087303ADSCrossRefGoogle Scholar
  24. Ferreira PG, Joyce M (1998) Phys Rev D 58:023503ADSCrossRefGoogle Scholar
  25. Francis MJ, Lewis GF, Linder EV (2008) MNRAS 394:605ADSCrossRefGoogle Scholar
  26. Gerke BF, Efstathiou G (2002) MNRAS 335:33ADSCrossRefGoogle Scholar
  27. Governato F et al (1999) MNRAS 307:949ADSCrossRefGoogle Scholar
  28. Grossi M, Springel V (2009) MNRAS 394:1559ADSCrossRefGoogle Scholar
  29. Halliwell JJ (1987) Phys Lett B 185:341MathSciNetADSCrossRefGoogle Scholar
  30. Hockney RW, Eastwood JW (1981) Computer simulation using particles. McGraw-Hill, New YorkGoogle Scholar
  31. Jenkins A, Frenk CS, White SDM, Colberg JM, Cole S, Evrard AE, Couchman HMP, Yoshida N (2001) MNRAS 321:372ADSCrossRefGoogle Scholar
  32. Kunz M, Corasaniti P-S, Parkinson D, Copeland EJ (2004) Phys Rev D 70:041301ADSCrossRefGoogle Scholar
  33. Lacey CG, Cole S (1994) MNRAS 271:676ADSGoogle Scholar
  34. Lewis A, Bridle S (2002) Phys Rev D 66:103511ADSCrossRefGoogle Scholar
  35. Linder EV, Huterer D (2005) Phys Rev D 72:043509ADSCrossRefGoogle Scholar
  36. Linder EV, Jenkins A (2003) MNRAS 346:573ADSCrossRefGoogle Scholar
  37. Percival WJ et al (2009) MNRAS 401:2148ADSCrossRefGoogle Scholar
  38. Percival WJ et al (2007) MNRAS 381:1053ADSCrossRefGoogle Scholar
  39. Press WH, Schechter P (1974) ApJ 187:425ADSCrossRefGoogle Scholar
  40. Reed D, Bower R, Frenk C, Jenkins A, Theuns T (2007) MNRAS 374:2ADSCrossRefGoogle Scholar
  41. Sanchez AG, Baugh CM, Angulo R (2008) MNRAS 390:1470ADSGoogle Scholar
  42. Sánchez AG, Crocce M, Cabré A, Baugh CM, Gaztañaga E (2009) MNRAS 400:1643ADSCrossRefGoogle Scholar
  43. Sheth RK, Tormen G (2002) MNRAS 329:61ADSCrossRefGoogle Scholar
  44. Sheth RK, Mo HJ, Tormen G (2001) MNRAS 323:1ADSCrossRefGoogle Scholar
  45. Smith RE et al (2003) MNRAS 341:1311ADSCrossRefGoogle Scholar
  46. Springel V et al (2005) Nature 435:629ADSCrossRefGoogle Scholar
  47. Steinhardt PJ, Wang L-M, Zlatev I (1999) Phys Rev D 59:123504ADSCrossRefGoogle Scholar
  48. Wands D, Copeland EJ, Liddle AR (1993) NYASA 688:647ADSCrossRefGoogle Scholar
  49. Warren MS, Abazajian K, Holz DE, Teodoro L (2006) ApJ 646:881ADSCrossRefGoogle Scholar
  50. Weller J, Lewis AM (2003) MNRAS 346:987ADSCrossRefGoogle Scholar
  51. Wetterich C (1995) Astron Astrophys 301:321ADSGoogle Scholar
  52. Wetterich C (2004) Phys Lett B 594:17ADSCrossRefGoogle Scholar
  53. White SDM, Efstathiou G, Frenk CS (1993) MNRAS 262:1023ADSGoogle Scholar
  54. Xia J-Q, Viel M (2009) JCAP 0904:002ADSCrossRefGoogle Scholar
  55. Zlatev I, Wang L-M, Steinhardt PJ (1999) Phys Rev Lett 82:896ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Elise Jennings
    • 1
  1. 1.Durham UniversityDurhamUK

Personalised recommendations