Advertisement

Detecting and Exploiting Chaotic Transport in Mechanical Systems

  • Shane D. Ross
  • Phanindra Tallapragada
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

Several geometric and probabilistic methods for studying chaotic phase space transport have been developed and fruitfully applied to diverse areas from orbital mechanics, chemistry, biomechanics to fluid mechanics and beyond [1–31].

Keywords

Invariant Manifold Unstable Manifold Singular Vector Markov Operator Lagrangian Coherent Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We wish to thank Carmine Senatore and Shibabrat Naik for contributing their computations. This material is based upon work supported by the National Science Foundation under Grant Nos. 0919088, 0938047 and 1100263. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

References

  1. 1.
    Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10, 427–469 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Gabern, F., Koon, W.S., Marsden, J.E., Ross, S.D.: Theory and computation of non-RRKM lifetime distributions and rates in chemical systems with three or more degrees of freedom. Physica D 211, 391–406 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Gabern, F., Koon, W.S., Marsden, J.E., Ross, S.D., Yanao, T.: Application of tube dynamics to non-statistical reaction processes. Few-Body Syst. 38, 167–172 (2006)CrossRefGoogle Scholar
  4. 4.
    Jaffé, C., Farrelly, D., Uzer, T.: Transition state in atomic physics. Phys. Rev. A 60, 3833–3850 (1999)CrossRefGoogle Scholar
  5. 5.
    Jaffé, C., Farrelly, D., Uzer, T.: Transition state theory without time-reversal symmetry: chaotic ionization of the hydrogen atom. Phys. Rev. Lett. 84, 610–613 (2000)CrossRefGoogle Scholar
  6. 6.
    Martens, C.C., Davis, M.J., Ezra, G.S.: Local frequency analysis of chaotic motion in multidimensional systems: energy transport and bottlenecks in planar OCS. Chem. Phys. Lett. 142, 519–528 (1987)CrossRefGoogle Scholar
  7. 7.
    De Leon, N.: Cylindrical manifolds and reactive island kinetic theory in the time domain. J. Chem. Phys. 96, 285–297 (1992)CrossRefGoogle Scholar
  8. 8.
    De Leon, N., Ling, S.: Simplification of the transition state concept in reactive island theory: Application to the HCN=CNH isomerization. J. Chem. Phys. 101, 4790–4802 (1994)CrossRefGoogle Scholar
  9. 9.
    De Leon, N., Mehta, M.A., Topper, R.Q.: Cylindrical manifolds in phase space as mediators of chemical reaction dynamics and kinetics. I. Theory. J. Chem. Phys. 94, 8310–8328 (1991)CrossRefGoogle Scholar
  10. 10.
    De Leon, N., Mehta, M.A., Topper, R.Q.: Cylindrical manifolds in phase space as mediators of chemical reaction dynamics and kinetics. II. Numerical considerations and applications to models with two degrees of freedom. J. Chem. Phys. 94, 8329–8341 (1991)Google Scholar
  11. 11.
    Shadden, S.C., Lekien, F., Marsden, J.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Physica D 212, 271–304 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Lekien, F., Shadden, S.C., Marsden, J.: Lagrangian coherent structures in n-dimensional systems. J. Math. Phys. 48 (2007)Google Scholar
  13. 13.
    Wiggins, S.: Chaotic Transport in Dynamical Systems, Interdisciplinary Applied Mathematics, 1st edn. Springer, Berlin (1993)Google Scholar
  14. 14.
    Ide, K., Small, D., Wiggins, S.: Distinguished hyperbolic trajectories in time dependent fluid flows: Analytical and computational approach for velocity fields as data sets. Nonlin. Process. Geophys. 9, 237–263 (2002)CrossRefGoogle Scholar
  15. 15.
    Wiggins, S.: The dynamical systems approach to Lagrangian transport in oceanic flows. Ann. Rev. Fluid Mech. 37, 295–328 (2005)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Haller, G.: Lagrangian coherent structures and the rate of strain in a partition of two-dimensional turbulence. Phys. Fluids A 13, 3368–3385 (2001)MathSciNetGoogle Scholar
  17. 17.
    Dellnitz, M., Junge, O.: On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal. 36, 491–515 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Dellnitz, M., Junge, O., Koon, W.S., Lekien, F., Lo, M.W., Marsden, J.E., Padberg, K., Preis, R., Ross, S.D., Thiere, B.: Transport in dynamical astronomy and multibody problems. Int. J. Bifurc. Chaos 15, 699–727 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Dellnitz, M., Junge, O., Lo, M.W., Marsden, J.E., Padberg, K., Preis, R., Ross, S.D., Thiere, B.: Transport of Mars-crossing asteroids from the quasi-Hilda region. Phys. Rev. Lett. 94, 231102 (2005)CrossRefGoogle Scholar
  20. 20.
    Froyland, G., Dellnitz, M.: Detecting and locating near optimal almost invariant sets and cycles. SIAM J. Sci. Comput. 24, 1507–1523 (2009)MathSciNetGoogle Scholar
  21. 21.
    Froyland, G., Lloyd, S., Santitissadeekorn, N.: Coherent sets for nonautonomous dynamical systems. Physica D 239, 1527–1541 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Froyland, G., Santitissadeekorn, N., Monahan, A.: Transport in time-dependent dynamical systems: Finite time coherent sets. Chaos 20, 043116 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Du Toit, P.C.: Transport and separatrices in time dependent flows. PhD thesis, California Institute of Technology (2010)Google Scholar
  24. 24.
    Dellnitz, M., Hohmann, A., Junge, O., Rumpf, M.: Exploring invariant sets and invariant measures. Chaos 7, 221 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Coulliette, C., Lekien, F., Paduan, J.D., Haller, G., Marsden, J.: Optimal pollution mitigation in monterey bay based on coastal radar data and nonlinear dynamics. Environ. Sci. Technol. 41, 6562–6572 (2007)CrossRefGoogle Scholar
  26. 26.
    Tallapragada, P., Ross, S.D.: Particle segregation by Stokes number for small neutrally buoyant spheres in a fluid. Phys. Rev. E 78 (2008)Google Scholar
  27. 27.
    Haller, G., Sapsis, T.: Instabilities in the dynamics of neutrally buoyant particles. Phys. Fluids 20 (2008)Google Scholar
  28. 28.
    Lekien, F., Ross, S.D.: The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds. Chaos 20, 017505 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Tang, W., Mathur, M., Haller, G., Hahn, D.C., Ruggiero, F.H.: Lagrangian coherent structures near a subtropical jet stream. J. Atmos. Sci. 67, 2307–2319 (2010)CrossRefGoogle Scholar
  30. 30.
    Wilson, M., Peng, J., Dabiri, J.O., Eldredge, J.D.: Lagrangian coherent structures in low Reynolds number swimming. J. Phys. Conden. Matter 21, 204105 (2009)CrossRefGoogle Scholar
  31. 31.
    Stremler, M.A., Ross, S.D., Grover, P., Kumar, P.: Topological chaos and periodic braiding of almost-cyclic sets. Phys. Rev. Lett. 106, 114101 (2011)CrossRefGoogle Scholar
  32. 32.
    Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65(3), 851 (1993)CrossRefGoogle Scholar
  33. 33.
    Pierrehumbert, R.T.: Chaotic mixing of tracer and vorticity by modulated traveling Rossby waves. Geophys. Astrophys. Fluid Dyn. 58, 285–319 (1991)CrossRefGoogle Scholar
  34. 34.
    Pierrehumbert, R.T.: Large-scale horizontal mixing in planetary atmospheres. Phys. Fluids A 3, 1250–1260 (1991)CrossRefGoogle Scholar
  35. 35.
    Shadden, S.C., Lekien, F., Marsden, J.E.: Definition and properties of Lagrangian coherent structures: mixing and transport in two-dimensional aperiodic flows. Physica D 212, 271–304 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Haynes, P.: Stratospheric dynamics. Annu. Rev. Fluid Mech. 37, 263–293 (2005)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Du Toit, P.C., Marsden, J.E.: Horseshoes in hurricanes. J. Fixed Point Theory Appl. 7(2), 351–384 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Dingwell, J.B., Cusumano, J.P.: Nonlinear time series analysis of normal and pathological human walking. Chaos 10(4), 848–863 (2000)zbMATHCrossRefGoogle Scholar
  39. 39.
    Dingwell, J.B.: Lyapunov exponent. In: Akay, M. (ed.) The Wiley Encyclopedia of Biomedical Engineering. Wiley, New York (2006)Google Scholar
  40. 40.
    England, S., Granata, K.P.: The influence of gait speed on local dynamic stability of walking. Gait Posture 25, 172–178 (2007)CrossRefGoogle Scholar
  41. 41.
    Tanaka, M.L., Ross, S.D.: Separatrices and basins of stability from time series data: an application to biodynamics. Nonlin. Dyn. 58(1–2), 1–21 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Tanaka, M.L., Nussbaum, M.A., Ross, S.D.: Evaluation of the threshold of stability for the human spine. J. Biomech. 42(8), 1017–1022 (2009)CrossRefGoogle Scholar
  43. 43.
    Tanaka, M.L., Ross, S.D., Nussbaum, M.: Mathematical modeling and simulation of seated stability. J. Biomech. 43, 906–912 (2010)CrossRefGoogle Scholar
  44. 44.
    Ross, S.D., Tanaka, M.L., Senatore, C.: Detecting dynamical boundaries from kinematic data in biomechanics. Chaos 20, 017507 (2010)CrossRefGoogle Scholar
  45. 45.
    Tanaka, M.L., Ross, S.D.: Using topological equivalence to discover stable control parameters in biodynamic systems. Comput. Meth. Biomech. Biomed. Eng. (2012). doi:10.1080/10255842.2011.565413CrossRefGoogle Scholar
  46. 46.
    Hénon, M., Heiles, C.: The applicability of the third integral of motion: some numerical experiments. Astron. J. 69, 73–79 (1964)CrossRefGoogle Scholar
  47. 47.
    Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Systems, the Three-Body Problem and Space Mission Design. Marsden Books, ISBN 978-0-615-24095-4Google Scholar
  48. 48.
    Ross, S.D.: The interplanetary transport network. Am. Sci. 94, 230–237 (2006)Google Scholar
  49. 49.
    Ross, S.D., Scheeres, D.J.: Multiple gravity assists, capture, and escape in the restricted three-body problem. SIAM J. Appl. Dyn. Syst. 6(3), 576–596 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Grover, P., Ross, S.D.: Designing trajectories in a planet-moon environment using the controlled Keplerian map. J. Guid. Contr. Dyn. 32, 436–443 (2009)CrossRefGoogle Scholar
  51. 51.
    Gawlik, E.S., Marsden, J.E., Du Toit, P.C., Campagnola, S.: Lagrangian coherent structures in the planar elliptic restricted three-body problem. Celestial Mech. Dyn. Astron. 103, 227–249 (2009)zbMATHCrossRefGoogle Scholar
  52. 52.
    Boyland, P.L., Aref, H., Stremler, M.A.: Topological fluid mechanics of stirring. J. Fluid Mech. 403, 227–304 (2000)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Thiffeault, J.-L., Finn, M.D.: Topology, braids and mixing in fluids. Phil. Trans. R. Soc. Lond. A 364(1849), 3251–3266 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Gouillart, E., Thiffeault, J., Finn, M.: Topological mixing with ghost rods. Phys. Rev. E 73(3) (2006)Google Scholar
  55. 55.
    Stremler, M.A., Chen, J.: Generating topological chaos in lid-driven cavity flow. Phys. Fluids 19, 103602 (2007)CrossRefGoogle Scholar
  56. 56.
    Dellnitz, M., Junge, O.: On the approximation of complicated dynamical behavior. SIAM J. Numer. Anal. 36, 491–515 (1999)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Jaffé, C., Ross, S.D., Lo, M.W., Marsden, J.E., Farrelly, D., Uzer, T.: Theory of asteroid escape rates. Phys. Rev. Lett. 89, 011101 (2002)CrossRefGoogle Scholar
  58. 58.
    Rom-Kedar, V., Wiggins, S.: Transport in two-dimensional maps. Arch. Rat. Mech. Anal. 109, 239–298 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Rom-Kedar, V., Wiggins, S.: Transport in two-dimensional maps: Concepts, examples, and a comparison of the theory of Rom-Kedar and Wiggins with the Markov model of MacKay, Meiss, Ott, and Percival. Physica D 51, 248–266 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Haller, G., Yuan, G.: Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147, 352–370 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Haller, G.: Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos 10, 99–108 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Haller, G.: Distinguished material surfaces and coherent structures in 3D fluid flows. Physica D 149, 248–277 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Haller, G.: Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Phys. Fluids 13, 3365–3385 (2001)MathSciNetCrossRefGoogle Scholar
  64. 64.
    Haller, G.: Lagrangian coherent structures from approximate velocity data. Phys. Fluids 14, 1851–1861 (2002)MathSciNetCrossRefGoogle Scholar
  65. 65.
    Lekien, F., Shadden, S.C., Marsden, J.E.: Lagrangian coherent structures in n-dimensional systems. J. Math. Phys. 48, 065404 (2007)MathSciNetCrossRefGoogle Scholar
  66. 66.
    Bowman, K.P., Pan, L.L., Campos, T., Gao, R.: Observations of fine-scale transport structure in the upper troposphere from the High-performance Instrumented Airborne Platform for Environmental Research. J. Geophys. Res. 112, D18111 (2007)CrossRefGoogle Scholar
  67. 67.
    Pan, L.L., Bowman, K.P., Atlas, E., Wofsy, S.C., Zhang, F., Bresch, J.F., Ridley, B.A., Pittman, J.V., Homeyer, C., Romashkin, P., Cooper, W.A.: The stratosphere-troposphere analyses of regional transport 2008 (START08) experiment. Bull. Am. Meteorol. Soc. 91, D23102 (2010)CrossRefGoogle Scholar
  68. 68.
    Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Resonance and capture of Jupiter comets. Celestial Mech. Dyn. Astron. 81, 27–38 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  69. 69.
    Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Low energy transfer to the Moon. Celestial Mech. Dyn. Astron. 81: 63–73 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    Koon, W.S., Lo, M.W., Marsden, J.E., Ross, S.D.: Constructing a low energy transfer between Jovian moons. Contemp. Math. 292, 129–145 (2002)MathSciNetCrossRefGoogle Scholar
  71. 71.
    Koon, W.S., Marsden, J.E., Ross, S.D., Lo, M.W., Scheeres, D.J.: Geometric mechanics and the dynamics of asteroid pairs. Ann. New York Acad. Sci. 1017, 11–38 (2004)CrossRefGoogle Scholar
  72. 72.
    Ross, S.D.: Cylindrical manifolds and tube dynamics in the restricted three-body problem. Ph.D. thesis, California Institute of Technology (2004)Google Scholar
  73. 73.
    Marsden, J.E., Ross, S.D.: New methods in celestial mechanics and mission design. Bull. Am. Math. Soc. 43, 43–73 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  74. 74.
    Newton, P.K., Ross, S.D.: Chaotic advection in the restricted four-vortex problem on a sphere. Physica D 223, 36–53 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Jerg, S., Junge, O., Ross, S.D.: Optimal capture trajectories using multiple gravity assists. Commun. Nonlin. Sci. Numer. Simul. 14(12), 4168–4175 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    Gómez, G., Koon, W.S., Lo, M.W., Marsden, J.E., Masdemont, J., Ross, S.D.: Connecting orbits and invariant manifolds in the spatial three-body problem. Nonlinearity 17, 1571–1606 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Wiggins, S.: Chaotic Transport in Dynamical Systems, vol. 2 of Interdisciplinary Applied  Mathematics. Springer, Berlin (1992)Google Scholar
  78. 78.
    Meiss, J.D.: Symplectic maps, variational principles, and transport. Rev. Mod. Phys. 64, 795–848 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    MacKay, R.S., Meiss, J.D., Percival, I.C.: Transport in Hamiltonian systems. Physica D 13, 55–81 (1984)MathSciNetzbMATHGoogle Scholar
  80. 80.
    Schroer, C.G., Ott, E.: Targeting in Hamiltonian systems that have mixed regular/chaotic phase spaces. Chaos 7, 512–519 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Tallapragada, P., Ross, S.D.: Particle segregation by Stokes number for small neutrally buoyant spheres in a fluid. Phys. Rev. E 78, 036308 (2008)CrossRefGoogle Scholar
  82. 82.
    Senatore, C., Ross, S.D.: Detection and characterization of transport barriers in complex flows via ridge extraction of the finite time Lyapunov exponent field. Int. J. Numer. Methods Eng. 86, 1163–1174 (2011)zbMATHCrossRefGoogle Scholar
  83. 83.
    Rom-Kedar, V., Leonard, A., Wiggins, S.: An analytical study of transport, mixing and chaos in an unsteady vortical flow. J. Fluid Mech. 214, 347–394 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Tallapragada, P., Ross, S.D.: A set oriented definition of the finite-time Lyapunov exponents and coherent sets (2012) (under review)Google Scholar
  85. 85.
    Lasota, A., Mackey, M.C.: Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, 2nd edn. Springer, Berlin (1994)Google Scholar
  86. 86.
    Froyland, G., Dellnitz, M.: Detecting and locating near-optimal almost-invariant sets and cycles. SIAM J. Sci. Comput. 24, 1839–1863 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Dellnitz, M., Junge, O.: Set oriented numerical methods for dynamical systems. In: Handbook of dynamical systems, vol. 2, pp. 221–264. North-Holland, Amsterdam (2002)Google Scholar
  88. 88.
    Fritzsche, D., Mehrmann, V.: An SVD approach to identifying metastable sets of Markov chains. In: Technical Report, Institut fur Mathematik, Technishe Universitat Berlin, 2006Google Scholar
  89. 89.
    Tallapragada, P., Ross, S.D., Schmale, D.G.: Lagrangian coherent structures are associated with fluctuations in airborne microbial populations. Chaos 21, 033122 (2011)CrossRefGoogle Scholar
  90. 90.
    Fenichel, N.: Persistence and smoothness of invariant manifolds for flows. Indiana Univ. Math. J. 21, 193–226 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    Yamato, H., Spencer, D.B.: Transit-orbit search for planar restricted three-body problems with perturbations. J. Guid. Contr. Dyn. 27, 1035–1045 (2004)CrossRefGoogle Scholar
  92. 92.
    Serban, R., Koon, W., Lo, M., Marsden, J., Petzold, L., Ross, S.D., Wilson, R.: Halo orbit mission correction maneuvers using optimal control. Automatica 38, 571–583 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Inanc, T., Shadden, S.C., Marsden, J.E.: Optimal trajectory generation in ocean flows. In: Proceedings of 2005 American Control Conference, pp. 674–679, Portland, OR, 2005Google Scholar
  94. 94.
    Senatore, C., Ross, S.D.: Fuel-efficient navigation in complex flows. In: Proceedings of 2008 American Control Conference, pp. 1244–1248 (2008)Google Scholar
  95. 95.
    Nijmeiejer, H., van der Schaft, A.J.: Nonlinear Dynamical Control Systems. Springer, Berlin (1990)CrossRefGoogle Scholar
  96. 96.
    Bloch, A.M.: Nonholomomic mechanics and control. Applied Mathematical Sciences Series. Springer, Berlin (2003)CrossRefGoogle Scholar
  97. 97.
    Techy, L., Woolsey, C.A.: Minimum-time path planning for unmanned aerial vehicles in steady uniform winds. J. Guid. Contr. Dyn. 32(6), 1736–1746 (2009)CrossRefGoogle Scholar
  98. 98.
    McGee, T.G., Hedrick, J.K.: Optimal path planning with a kinematic airplane model. J. Guid. Contr. Dyn. 30(2), 629–633 (2007)CrossRefGoogle Scholar
  99. 99.
    Techy, L., Woolsey, C.A., Morgansen, K.A.: Minimum-time planar path planning for flight vehicles in wind with turn rate and acceleration bounds. In: IEEE International Conference on Robotics and Automation, pp. 3240–3245. Anchorage, AK (2010)Google Scholar
  100. 100.
    Cartwright, J.H.E., Magnasco, M.O., Piro, O., Tuval, I.: Bailout embeddings and neutrally buoyant particles in three-dimensional flows. Phys. Rev. Lett. 89, 264501 (2002)CrossRefGoogle Scholar
  101. 101.
    Ross, S.D.: Optimal flapping strokes for self-propulsion in a perfect fluid. In: Proceedings of 2006 American Control Conference, pp. 4118–4122 (2006)Google Scholar
  102. 102.
    Chang, D.E., Marsden, J.E.: Gyroscopic forces and collision avoidance with convex obstacles. In: Kang, W., Xiao, M., Borges, C. (eds.) New Trends in Nonlinear Dynamics and Control, and their Applications. Lecture Notes in Control and Information Sciences, vol. 295, pp. 145–160. Springer, Berlin (2003)CrossRefGoogle Scholar
  103. 103.
    Zhang, F., Justh, E., Krishnaprasad, P.S.: Boundary following using gyroscopic control. In: Proceedings of 43rd IEEE Conference on Decisions and Control, pp. 5204–5209 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Engineering Science and MechanicsVirginia TechBlacksburgUSA
  2. 2.Mechanical Engineering and Engineering ScienceUniversity of North Carolina at CharlotteCharlotteUSA

Personalised recommendations