Advertisement

Synchronous Dynamics over Numerosity-Constrained Stochastic Networks

  • Nicole Abaid
  • Maurizio Porfiri
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

Collective behavior in animal groups is a recognizable phenomenon executed by interacting individuals that exhibit coordinated motions [67]. Social species, such as fish, use collective behavior to capitalize on inherent benefits of social life, such as advantages in energy expenditure, foraging capabilities, and predator evasion [49]. Beyond spatial constraints such as distance which limit interactions between individuals, communication underlying collective behavior is mediated by the perceptual capabilities of the species. Perceptual capabilities include vision, vibration sensing, electrical, and chemical signals, and psychological factors such as numerosity, which quantifies a critical limit to the species perception of natural numbers.

Keywords

Cluster Coefficient Large Lyapunov Exponent Stochastic Stability Consensus Problem Convergence Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to gratefully acknowledge support from the National Science Foundation under CAREER Grant # CMMI-0745753 and GK-12 Fellows Grant # DGE-0741714.

References

  1. 1.
    Abaid, N., Porfiri, M.: Fish in a ring: spatiotemporal pattern formation in one-dimensional animal groups. J. R. Soc. Interf. 7(51), 1441–1453 (2010)CrossRefGoogle Scholar
  2. 2.
    Abaid, N., Porfiri, M.: Topological analysis of numerosity-constrained social networks. In: Proceedings of the ASME DSCC – Dynamic Systems and Control Conference, p. WeBT3.1 (2010)Google Scholar
  3. 3.
    Abaid, N., Porfiri, M.: Consensus over numerosity-constrained random networks. IEEE Trans. Automat. Contr. 56(4), 649–654 (2011)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Amritkar, R., Hu, C.: Synchronized state of coupled dynamics on time-varying networks. Chaos 16(1), 015,117 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Arenas, A., Diaz-Guilera, A., Kurths, J., Moreno, Y., Changsong, Z.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)Google Scholar
  6. 6.
    Balanis, C.A.: Antenna Theory: Analysis and Design, 2nd edn. Wiley, New York (1997)Google Scholar
  7. 7.
    Ballerini, M., Cabibbo, N., Candelier, R., Cavagna, A., Cisbani, E., Giardina, I., Lecomte, V., Orlandi, A., Parisi, G., Procaccini, A., Viale, M., Zdravkovic, V.: Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proc. Nat. Acad. Sci. 105(4), 1232–1237 (2008)CrossRefGoogle Scholar
  8. 8.
    Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Belykh, V., Belykh, I., Hasler, M.: Connection graph stability method for synchronized coupled chaotic systems. Physica D 195(1–2), 159–187 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bernstein, D.: Matrix Mathematics. Princeton University Press, Princeton, NJ (2005)zbMATHGoogle Scholar
  11. 11.
    Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods. Athena Scientific, Belmont, MA (1997)Google Scholar
  12. 12.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Buck, J., Buck, E.: Synchronous fireflies. Sci. Am. 234(5), 74 (1976)Google Scholar
  14. 14.
    Bunke, H., Dickinson, P.J., Kraetzl, M., Wallis, W.D.: A Graph-Theoretic Approach to Enterprise Network Dynamics, chap. Distances, clustering, and small worlds, pp. 147–164. Birkhuser, Boston, MA (2007)Google Scholar
  15. 15.
    Buono, P.L., M., G.: Models of central pattern generators for quadruped locomotion: I. primary gaits. J. Math. Biol. 42(4), 291–326 (2001)Google Scholar
  16. 16.
    Chen, G., Yu, X. (eds.): Chaos Control Theory and Applications, Lecture Notes in Control and Information Sciences, vol. 292. Springer, New York (2003)Google Scholar
  17. 17.
    Cuomo, K.M., Oppenheim, V.A., Strogatz, S.H.: Synchronization of Lorentz-based chaotic circuits with application to communications. IEEE Trans. Cir. Syst. II 40(10), 626–633 (1993)CrossRefGoogle Scholar
  18. 18.
    DeLellis, P., di Bernardo, M., Gorochowski, T.E., Russo, G.: Synchronization and control of complex networks via contraction, adaptation and evolution. IEEE Circ. Syst. Mag. 10(3), 64–82 (2010)CrossRefGoogle Scholar
  19. 19.
    Duane, G.S., Webster, P.J., Weiss, J.B.: Go-occurrence of northern and southern hemisphere blocks as partially synchronized chaos. J. Atmos. Sci. 56(24), 4183–4205 (1999)CrossRefGoogle Scholar
  20. 20.
    Durrett, R.: Random Graph Dynamics. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  21. 21.
    Erdős, P., Rényi, A.: On the evolution of random graphs. Publications of the Mathematics Institute, Hungarian Academy of Sciences, vol. 5, pp. 17–61 (1960)Google Scholar
  22. 22.
    Erdos P.,  Renyi, A.: On random graphs. Publicationes Mathematicae 6, 290–297 (1959)MathSciNetGoogle Scholar
  23. 23.
    Fagiolo, G.: Clustering in complex directed networks. Phys. Rev. E 76(2), 026,107 (2007)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Fang, Y., Loparo, K.A.: Stochastic stability of jump linear systems. IEEE Trans. Autom. Contr. 47(7), 1204–1208 (2002)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Feng, X., Loparo, K.A., Ji, Y., Chizeck, H.J.: Stochastic stability properties of jump linear systems. IEEE Trans. Autom. Contr. 37(1), 38–53 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Gleiss, P.M.: Short cycles: Minimum cycle bases of graphs from chemistry and biochemistry. Ph.D. thesis, Universitat Wien (2001)Google Scholar
  27. 27.
    Godsil, C., Royle, G.: Algebraic Graph Theory. Springer, New York (2004)Google Scholar
  28. 28.
    Golub, G.G., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins, Baltimore, MD (1996)zbMATHGoogle Scholar
  29. 29.
    Gonzalez-Miranda, J.M.: Synchronization and Control of Chaos. Imperial College Press, London (2004)Google Scholar
  30. 30.
    Guevara, M.R., Shirier, A., Glass, L.: Phase-locked rhythms in periodically stimulated heart cell aggregates. Am. J. Physiol. 254(1), H1–H10 (1988)Google Scholar
  31. 31.
    Hatano, Y., Mesbahi, M.: Agreement over random networks. IEEE Trans Autom. Contr. 50(11), 1867–1872 (2005)MathSciNetCrossRefGoogle Scholar
  32. 32.
    He, J.H., Liu, H.M., Pan, N.: Variational model for ionomeric polymer-metal composite. Polymer 44, 8195–8199 (2003)CrossRefGoogle Scholar
  33. 33.
    Hovareshti, P., Baras, J.S., Gupta, V.: Probabilistic switching and convergence rate in consensus problems. In: Proceedings of the Allerton Conference on Communication, Control, and Computing. Urbana-Champaign, IL (2007)Google Scholar
  34. 34.
    Huang, M., Manton, J.H.: Stochastic consensus seeking with noisy and directed inter-agent communication: Fixed and randomly varying topologies. IEEE Trans. Autom. Contr. 55(1), 235–241 (2010)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Ito, J., Kaneko, K.: Spontaneous structure formation in a network of chaotic units with variable connection strengths. Phys. Rev. Lett. 88(2), 028,701 (2002)Google Scholar
  36. 36.
    Jadbabaie, A., Lin, J., Morse, A.S.: Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Contr. 48(6), 988–1001 (2003)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Ji, Y., Chizeck, H.J., Feng, X., Loparo, K.A.: Stability and control of discrete-time jump linear systems. Contr. Theory Adv. Technol. 7(2), 247–270 (1991)MathSciNetGoogle Scholar
  38. 38.
    Juang, J., Liang, Y.H.: Synchronous chaos in coupled map lattices with general connectivity topology. SIAM J. Appl. Dyn. Syst. 7(3), 755–765 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Kar, S., Moura, J.M.F.: Sensor networks with random links: topology design for distributed consensus. IEEE Trans. Sign. Process. 56(7), 3315–3326 (2008)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, New York (1984)zbMATHCrossRefGoogle Scholar
  41. 41.
    Kushner, H.: Introduction to Stochastic Control. Holt, Rinehart, and Winston, New York (1971)Google Scholar
  42. 42.
    Lu, J., Chen, G.: A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Trans. Autom. Contr. 50(6), 841–846 (2005)CrossRefGoogle Scholar
  43. 43.
    Lu, J., Yu, X., Chen, G.: Chaos synchronization of general complex dynamical networks. Physica A 334(1–2), 281–302 (2004)MathSciNetCrossRefGoogle Scholar
  44. 44.
    Lu, W., Atay, F.M., Jost, J.: Synchronization of discrete-time dynamical networks with time-varying couplings. SIAM J. Math. Anal. 39(4), 1231–1259 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Ma, J., Song, W.G., Zhang, J., Lo, S.M., Liao, G.X.: k-Nearest-Neighbor interaction induced self-organized pedestrian counter flow. Physica A 389(10), 2101–2117 (2010)CrossRefGoogle Scholar
  46. 46.
    Newman, M.E.J.: Assortative mixing in networks. Phys. Rev. Lett. 89(20), 208,701 (2002)CrossRefGoogle Scholar
  47. 47.
    Newman, M.E.J.: Mixing patterns in networks. Phys. Rev. E 67(2), 026,126 (2003)CrossRefGoogle Scholar
  48. 48.
    Nishikawa, T., Motter, A.: Synchronization is optimal in nondiagonalizable networks. Phys. Rev. E 73(6), 065,106(R) (2006)Google Scholar
  49. 49.
    Partridge, B.L.: The structure and function of fish schools. Sci. Am. 246(6), 114–123 (1982)CrossRefGoogle Scholar
  50. 50.
    Patterson, S., Bamieh, B., Abbadi, A.E.: Convergence rates of distributed average consensus with stochastic link failures. IEEE Trans. Autom. Contr. 55(4), 880892 (2010)CrossRefGoogle Scholar
  51. 51.
    Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80(10), 2109–2112 (1998)CrossRefGoogle Scholar
  52. 52.
    Pereira, S.S., Pages-Zamora, A.: Mean square convergence of consensus algorithms in random WSNs. IEEE Trans. Signal Process. 58(5), 2866–2874 (2010)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Pikovsky, A., Rosemblum, M., Kurths, J.: Synchronization, A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge (2001)zbMATHCrossRefGoogle Scholar
  54. 54.
    Porfiri, M.: A master stability function for stochastically coupled chaotic maps, Europhysics Letters 96, 40014(P1-6), (2011)Google Scholar
  55. 55.
    Porfiri, M., Bollt, E.M., Stilwell, D.J.: Decline of minorities in stubborn societies. Eur. Phys. J. B 57(4), 481–486 (2007)CrossRefGoogle Scholar
  56. 56.
    Porfiri, M., Fiorilli, F.: Global pulse synchronization of chaotic oscillators through fast-switching: theory and experiments. Chaos Solitons Fractals 41(1), 245–262 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Porfiri, M., Fiorilli, F.: Node-to-node pinning-control of complex networks. Chaos: An Interdiscipl. J. Nonlinear Sci. 19(1), 013,122 (2009)MathSciNetGoogle Scholar
  58. 58.
    Porfiri, M., Fiorilli, F.: Experiments on node-to-node pinning control of chua’s circuits. Physica D 239(8), 454–464 (2010)zbMATHCrossRefGoogle Scholar
  59. 59.
    Porfiri, M., Pigliacampo, R.: Master-slave global stochastic synchronization of chaotic oscillators. SIAM J. Appl. Dyn. Syst. 7(3), 825–842 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Porfiri, M., Stilwell, D.J.: Consensus seeking over random weighted directed graphs. IEEE Trans. Autom. Contr. 52(9), 1767–1773 (2007)MathSciNetCrossRefGoogle Scholar
  61. 61.
    Porfiri, M., Stilwell, D.J., Bollt, E.M.: Synchronization in random weighted directed networks. IEEE Trans. Cir. Syst. I 55(10), 3170–3177 (2008)MathSciNetCrossRefGoogle Scholar
  62. 62.
    Porfiri, M., Stilwell, D.J., Bollt, E.M., Skufca, J.D.: Random talk: Random walk and synchronizability in a moving neighborhood network. Physica D 224(1-2), 102–113 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Rangarajan, G., Ding, M.: Stability of synchronized chaos in coupled dynamical systems. Phys. Lett. A 296(4–5), 204–209 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Ren, W., Beard, R.W.: Distributed Consensus in Multi-vehicle Cooperative Control. Springer, Berlin (2008)zbMATHGoogle Scholar
  65. 65.
    Stefanski, A., Wojewoda, J., Kapitaniak, T., Yanchuk, S.: Simple estimation of synchronization threshold in ensembles of diffusively coupled chaotic systems. Phys. Rev. E 70(2), 026,217 (2004)CrossRefGoogle Scholar
  66. 66.
    Stilwell, D.J., Bollt, E.M., Roberson, D.G.: Sufficient conditions for fast switching synchronization in time varying network topologies. SIAM J. Appl. Dyn. Syst. 5(1), 140–156 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Sumpter, D.J.T.: Collective Animal Behavior. Princeton University Press, Princeton (2009)Google Scholar
  68. 68.
    Sun, J., Bollt, E.M., Nishikawa, T.: Complex Sciences Part 1, chap. Synchronization stability of coupled near-identical oscillator network, pp. 900–911. Springer, Berlin (2009)Google Scholar
  69. 69.
    Tahbaz-Salehi, A., Jadbabaie, A.: A necessary and sufficient condition for consensus over random networks. IEEE Trans. Automat. Contr. 53(3), 791–795 (2008)MathSciNetCrossRefGoogle Scholar
  70. 70.
    Tegeder, R.W., Krause, J.: Density dependence and numerosity in fright stimulated aggregation behaviour of shoaling fish. Phil. Trans. R. Soc. B 350(1334), 381–390 (1995)CrossRefGoogle Scholar
  71. 71.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  72. 72.
    Womelsdorf, T., Fries, P.: The role of neuronal synchronization in selective attention. Curr. Opin. Neurobiol. 17(2), 154–160 (2007)CrossRefGoogle Scholar
  73. 73.
    Wu, C.W.: Synchronization and convergence of linear dynamics in random directed networks. IEEE Trans. Automat. Contr. 51(7), 1207–1210 (2006)CrossRefGoogle Scholar
  74. 74.
    Wu, C.W.: Synchronization in Complex Networks of Nonlinear Dynamical Systems. World Scientific, New York (2007)zbMATHCrossRefGoogle Scholar
  75. 75.
    Yanchuk, S., Stefanski, A., Kapitaniak, T., Wojewoda, J.: Dynamics of an array of mutually coupled semiconductor lasers. Phys. Rev. E 73(1), 016,209 (2006)CrossRefGoogle Scholar
  76. 76.
    Zhao, J., Hill, D.J., Liu, T.: Synchronization of complex dynamical networks with switching topology: A switched system point of view. Automatica 45(11), 2502–2511 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Zhou, J., Wang, Q.: Convergence speed in distributed consensus over dynamically switching random networks. Automatica 45(6), 1455–1461 (2009)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nicole Abaid
    • 1
  • Maurizio Porfiri
    • 1
  1. 1.Department of Mechanical and Aerospace EngineeringPolytechnic Institute of New York UniversityBrooklynUSA

Personalised recommendations