Advertisement

Chaotic Behavior of Transistor Circuits

  • M. P. Hanias
  • H. E. Nistazakis
  • G. S. Tombras
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

In this chapter we present the behavior study of a chaotic circuit which is composed by an externally triggered single transistor. This investigation has been done with the three circuit-cases implementations that follow. First, we investigate the correlation of the chaotic time series between the transistor’s emitter and collector, by applying the nearest neighbor algorithm, for the prediction of the emitter’s voltage time series by reconstructing its attractor. This procedure is based on estimating the number of the collector’s nearest neighbor voltage time series for specific time interval. Next, we study an externally triggered experimental chaotic circuit, with a bipolar junction transistor operating in its reverse active region. In this case, we apply nonlinear time series modeling techniques to analyze the output voltage oscillations of the circuit and reveal the presence of chaos, which is achieved by controlling the amplitude of the applied input signal. Finally, we study an optoelectronic chaotic circuit which is based on an optocoupler device and can be used as a controlled optoelectronic chaotic signal generator and the chaotic behavior of a single electron transistor circuit.

Keywords

Average Mutual Information Normalize Mean Square Error Large Lyapunov Exponent Chaotic Signal Chaotic Time Series 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Hanias, P.M., Tombras, G.S.: Time series cross prediction in a single transistor chaotic circuit. Chaos Solitons Fractals 41, 1167–1173 (2009)CrossRefGoogle Scholar
  2. 2.
    Hanias, P.M., Tombras, G.S., Giannis, I.L.: Chaotic operation by a single transistor circuit in the reverse active region. Chaos 20, 013105 (2010)CrossRefGoogle Scholar
  3. 3.
    Hanias, P.M., Nistazakis, H.E., Tombras, G.S.: Study of an optoelectronic chaotic circuit. 3rd International Interdisciplinary Chaos Symposium on Chaos and Complex Systems, Istanbul, Turkey, 2010Google Scholar
  4. 4.
    Hanias, P.M., Tombras, G.S.: Time series analysis in single transistor chaotic circuit. Chaos Solitons Fractals 40, 246–256 (2009)CrossRefGoogle Scholar
  5. 5.
    Hinrichs, N., Oestreich, M., Popp, K.: Chaos Solitons Fractals 8(4), 535–558 (1997)zbMATHCrossRefGoogle Scholar
  6. 6.
    Bonakdar, M., Samadia, M., Salarieh, H., Alasty, A.: Chaos Solitons Fractals 36(3), 682–693 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bask, M.: Chaos Solitons Fractals 7(12), 2199–2214 (1996)Google Scholar
  8. 8.
    Halbiniak, Z., Jóźwiak, J.I.: Chaos Solitons Fractals 31(2), 409–416 (2007)Google Scholar
  9. 9.
    Cooper, C.: Chaos Solitons Fractals 30(1), 1–10 (2006)Google Scholar
  10. 10.
    Farmer, D., Sidorowich, J.: Phys. Rev. Lett. 59, 845–848 (1987)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Fernandez-Rodriguez, F., Sosvilla-Rivero S., Garcia-Artiles M.: An empirical evaluation of non-linear trading rules. Working paper, no. 16, FEDEA (2001)Google Scholar
  12. 12.
    Shanga, P., Li, X., Kamae, S.: Chaos Solitons Fractals 25(1), 121–128 (2005)CrossRefGoogle Scholar
  13. 13.
    Xiao, Y., Huang, Y.: Chaos Solitons Fractals 20(3), 497–502 (2004)Google Scholar
  14. 14.
    Akritas, P., Antoniou, I., Ivanov, V.V.: Chaos Solitons Fractals 11(1–3), 337–344 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Hu, J., Gao, B.J., White, D.K.: Chaos Solitons Fractals 22(4), 807–819 (2004)zbMATHCrossRefGoogle Scholar
  16. 16.
    Hanias, P.M., Giannaris, G., Spyridakis, A., Rigas, A.: Chaos Solitons Fractals 27(2), 569–573 (2006)zbMATHCrossRefGoogle Scholar
  17. 17.
    Takens, F.: Dynamical Systems and Bifurcations, Lecture Notes in Mathematics, vol. 1125, pp. 99–106. Springer, New York (1985)Google Scholar
  18. 18.
    Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  19. 19.
    Hong, Y. et al.: Chaos Solitons Fractals 29(2), 462–469 (2006)Google Scholar
  20. 20.
    Guo-Hui, L.: Chaos Solitons Fractals 26, 87 (2005)zbMATHCrossRefGoogle Scholar
  21. 21.
    Li, H.G., Zhou, P.S., Yang, K.: Chaos Solitons Fractals 33, 582 (2007)CrossRefGoogle Scholar
  22. 22.
    Abarbanel, I.D.H., Brown, R., Kadtke, B.J.: Phys. Rev. A 41, 1782 (1990)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Cao, L.: Physica D 110, 43 (1997)zbMATHCrossRefGoogle Scholar
  24. 24.
    Casdagli, M.: Physica D 35, 335 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Fraser, M.A., Swinney L.: Phys. Rev. A 33, 1134 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Frede, V., Mazzega, P.: Geophys. J. Int. 137, 551 (1999)CrossRefGoogle Scholar
  27. 27.
    Aasen, T., Kugiumtzis, D.T., Nordahl, G.H.S.: Comput. Biomed. Res. 95 (1997)Google Scholar
  28. 28.
    Rosenstein, T.M., Collins, J.J., Deluca, J.C.: Physica D 65, 117 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Kennel, B.M., Brown, R., Abarbanel, I.D.H.: Phys. Rev. A 45, 3403 (1992)CrossRefGoogle Scholar
  30. 30.
    Kantz, H., Schreiber, T., Hoffmann, I., Buzug, T., Pfister, G., Flepp, G.C., Simonet, J., Badii, R., Brun, E.: Phys. Rev. E 48, 1529 (1993)CrossRefGoogle Scholar
  31. 31.
    Orzeszko, W.: Chaos Solitons Fractals 38, 1355 (2008)CrossRefGoogle Scholar
  32. 32.
    Karakasidis, E.T., Charakopoulos, A.: Chaos Solitons Fractals 41, 1723 (2009)CrossRefGoogle Scholar
  33. 33.
    Kugiumtzis, D., Lillekjendlie, B., Christophersen, N.: Model. Identif. Contr. 15, 205 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Hegger, R., Kantz, B.R., Schreiber, T.: Chaos 9, 413 (1999)zbMATHCrossRefGoogle Scholar
  35. 35.
    Sauer, T.: Time series prediction by using delay coordinate embedding. In: Weigend, A.S., Gershenfeld, N.A. (eds.) Time Series Prediction: Forecasting the Future and Understanding the Past, pp. 175–193. Addison-Wesley, Reading, MA (1994)Google Scholar
  36. 36.
    Packard, H.N., Crutchifield, P.J., Farmer, D.J., Shaw, S.R.: Phys. Rev. Lett. 45, 712 (2009)CrossRefGoogle Scholar
  37. 37.
    Linsay, S.P.: Phys. Lett. A 153, 353 (1991)CrossRefGoogle Scholar
  38. 38.
    Guégan, D., Leroux, J.: Chaos Solitons Fractals 41, 240 (2009)CrossRefGoogle Scholar
  39. 39.
    Stavrinides, G.S., Deliolanis, C.N., Laopoulos, Th., Kyprianidis, M.I., Miliou, N.A., Anagnostopoulos, N.A.: The intermitten behavior of a second-order non-linear nonautonomous oscillator. Chaos Solitons Fractals 36, 1191–1199 (2008)CrossRefGoogle Scholar
  40. 40.
    Lonngren, E.K.: IEEE Trans. Edu. 34(1), (1991)Google Scholar
  41. 41.
    Ferry, K.D., Khoury, M., Gerousis, C., Rack, J.M., Gunther, A., Goodnick, M.S.: Single-electron charging effects in SiMOS devices. Physica E 9, 69–75 (2001)CrossRefGoogle Scholar
  42. 42.
    Korotkov, N.A.: Intrinsic noise on single – electron transistor. Phys. Rev. B 49(15), 10381–10392 (1994)CrossRefGoogle Scholar
  43. 43.
    Yen, L.J. et al.: J. Fundam. Sci. 1, 1–6 (2005)Google Scholar
  44. 44.
    Yu, S.Y., Lee, S.H., Hwang, W.S.: J. Korean Phys. Soc. 33, S269–S272 (1998)Google Scholar
  45. 45.
    Gandhi, G., Roska, T., Csurgay, A.: Single electron transistor based chua type chaotic circuit: A SPICE assisted proof. 8th European Conference on Circuit Theory and Design, 2007, ECCTD 2007. 1, DOI  10.1109/ECCTD.2007.4529751, 934–937 (2007)
  46. 46.
    Mykolaitis, G., Tamaševičius, A., Bumelienė, S.: Electron. Lett. 40(2), 91–92 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • M. P. Hanias
    • 1
  • H. E. Nistazakis
    • 1
  • G. S. Tombras
    • 1
  1. 1.Faculty of Physics, Department of Electronics, Computers, Telecommunications and ControlNational and Kapodistrian University of AthensAthensGreece

Personalised recommendations