An Output Feedback Control Design for \( {\rm H}_\infty \) Synchronization of Master-Slave Markovian Jump Systems with Time-Varying Delays

  • Hamid Reza Karimi
Part of the Understanding Complex Systems book series (UCS)


In this chapter, an output feedback control proach is proposed for exponential synchronization problem of master slave systems with both discrete and distributed time-varying delays and Markovian switching parameters. Using an appropriate Lyapunov Krasovskii functional, some delay-dependent sufficient conditions and a synchronization law which include the master slave parameters are established for designing a mode-dependent output feedback control law in terms of linear matrix inequalities. The controller guarantees the \( {\rm{H}}_\infty \) synchronization of the two coupled master and slave systems regardless of their initial states. A numerical example is given to show the effectiveness of the method.


Linear Matrix Inequality Slide Mode Control Slave System Output Feedback Control Markovian Switching 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Boukas, E.K., Benzaouia, A.: Stability of discrete-time linear systems with Markovian jumping parameters and constrained control. IEEE Trans. Automat. Contr. 47(3), 516–521 (2002)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Boukas, E.K., Zhang, Q., Yin, G.: Robust production and maintenance planning in stochastic manufacturing systems. IEEE Trans. Automat. Contr. 40(6), 1098–1102 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Cao, Y., Lam, J.: Stochastic stabilizability and \( {\rm H}_\infty \) control for discrete-time jump linear systems with time delay. J Franklin Institute 336(8), 1263–1281 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Shi, P., Boukas, E.K.: \( {\rm H}_\infty \) control for Markovian jumping linear systems with parametric uncertainty. J. Optim. Theor. Appl. 95(1), 75–99 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Mariton, M.: Jump Linear Systems in Automatic Control. Marcel Dekker Inc, New York (1990)Google Scholar
  6. 6.
    Mahmoud, M.S., Shi, P.: Robust control for Markovian jump linear discrete-time systems with unknown nonlinearities. IEEE Trans. Circ. Syst. I 49(4), 538–542 (2002)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Malmoud, M.S., Shi, P., Shi, Y.: \( {\rm H}_\infty \) and robust control of interconnected systems with Markovian jump parameters. J. Discrete Continuous Dyn. Syst. B 5(2), 365–384 (2005)CrossRefGoogle Scholar
  8. 8.
    Mahmoud, M.S., Shi, P.: Robust stability, stabilization and \( {\rm H}_\infty \) control of time-delay Systems with Markovian jump parameters. J. Robust Nonlinear Contr. 13(8), 755–784 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Mahmoud, M.S., Shi, P.: Output feedback stabilization and disturbance attenuation of time-delay jumping systems. IMA J. Math. Contr. Inform. 20(2), 179–199 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Zhang, L., Boukas, E.: Stability and stabilization of Markovian jump linear systems with partly unknown transition probability. Automatica 45(2), 463–468 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Zhang, L., Lam, J.: Necessary and sufficient conditions for analysis and synthesis of Markov jump linear systems with incomplete transition descriptions. IEEE Trans. Automat. Contr. 55(7), 1695–1701 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hale, J., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York, NY (1993)Google Scholar
  13. 13.
    Karimi, H.R., Zapateiro, M., Luo, N.: A linear matrix inequality approach to robust fault detection filter design of linear systems with mixed time-varying delays and nonlinear perturbations. J. Franklin Inst. 347, 957–973 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Wang, Z., Lam, J., Liu, X.H.: Nonlinear filtering for state delayed systems with Markovian switching. IEEE Trans. Signal Process. 51, 2321–2328 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Xu, S., Chen, T., Lam, J.: Robust \( {\rm H}_\infty \) filtering for uncertain Markovian jump systems with mode-dependent time delays. IEEE Trans. Automat. Contr. 48(5), 900–907 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wang, Z., Lam, J., Liu, X.: Exponential filtering for uncertain Markovian jump time-delay systems with nonlinear disturbances. IEEE Trans. Circ. Syst. II Exp. Briefs 51(5), 262–268 (2004)CrossRefGoogle Scholar
  17. 17.
    Mahmoud, M.S., Shi, P.: Robust Kalman filtering for continuous time-lag systems with Markovian jump parameters. IEEE Trans. Circ. Syst. I 50, 98–105 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Yang, H., Xia, Y., Shi, P.: Observer-based sliding mode control for a class of discrete systems via delta operator approach. J. Franklin Inst. 347(7), 1199–1213 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Karimi, H.R.: Robust delay-dependent \( {\rm H}_\infty \) control of uncertain time-delay systems with mixed neutral, discrete and distributed time-delays and Markovian switching parameters. IEEE Trans. Circ. Syst. I 58(8), 1910–1923 (2011)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Chen, D., Zhang, W.: Sliding mode control of uncertain neutral stochastic systems with multiple delays. Math. Probl. Eng. 2008, Article ID 761342, 9 pagesGoogle Scholar
  21. 21.
    Xia, Y., Jia, Y.: Robust sliding-mode control for uncertain time-delay systems: An LMI approach. IEEE Trans. Automat. Contr. 48, 1086–1092 (2003)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Shi, P., Xia, Y., Liu, G.P., Rees, D.: On designing of sliding-mode control for stochastic jump systems. IEEE Trans. Automat. Contr. 51, 97–103 (2006)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Zhang, L., Boukas, E.: Mode-dependent \( {\rm H}_\infty \) filtering for discrete-time Markovian jump linear systems with partly unknown transition probability. Automatica 45(6), 1462–1467 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Zhang, L.: \( {\rm H}_\infty \) estimation for piecewise Homogeneous Markov jump linear systems. Automatica 45(11), 2570–2576 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Lin, Z., Xia, Y., Shi, P., Wu, H.: Robust sliding mode control for uncertain linear discrete systems independent of time-delay. Int. J. Innovat. Comput. Inform. Contr. 7(2), 869–881 (2011)Google Scholar
  26. 26.
    Niu, Y., Ho, D.W.C.: Stabilization of discrete-time stochastic systems via sliding mode technique. J. Franklin Instit. (in Press). doi: 10.1016/j.jfranklin.2011.06.005
  27. 27.
    Mahmoud, M.S., Shi, P.: Methodologies for Control of Jumping Time-Delay Systems. Kluwer Academic Publishers, Amsterdam (2003)Google Scholar
  28. 28.
    Wu, L., Shi, P., Gao, H.: State estimation and sliding mode control of Markovian jump singular systems, IEEE Trans. Automat. Contr. 55(5), 1213–1219 (2010)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wu, L., Ho, D.W.C.: Sliding mode control of singular stochastic hybrid systems, Automatica 46, 779–783 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Niu, Y., Ho, D.W.C., Wang, X.: Sliding mode control for Itô stochastic systems with Markovian switching, Automatica 43, 1784–1790 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Pecora, L.M., Carroll, T.L.: Synchronization in chaotic systems. Phys. Rev. Lett. 64, 821–824 (1990)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Femat, R., Alvarez-Ramírez, J., Fernández-Anaya, G.: Adaptive synchronization of high-order chaotic systems: a feedback with low-order parametrization. Phys. D Nonl. Phenomena 139(3–4), 231–246 (2000)zbMATHCrossRefGoogle Scholar
  33. 33.
    Liao, T.L., Tsai, S.H.: Adaptive synchronization of chaotic systems and its application to secure communication. Chaos Solitons Fractals 11(9), 1387–1396 (2000)zbMATHCrossRefGoogle Scholar
  34. 34.
    Feki, M.: An adaptive chaos synchronization scheme applied to secure communication. Chaos Solitons Fractals 18, 141–148 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Wang, Y.W., Wen, C., Soh, Y.C., Xiao, J.W.: Adaptive control and synchronization for a class of nonlinear chaotic systems using partial system states. Phys. Lett. A 351(1–2), 79–84 (2006)zbMATHCrossRefGoogle Scholar
  36. 36.
    Gao, H., Lam, J., Chen, G.: New criteria for synchronization stability of general complex dynamical networks with coupling delays. Phys. Lett. A 360(2), 263–273 (2006)zbMATHCrossRefGoogle Scholar
  37. 37.
    Karimi, H.R., Maass, P.: Delay-range-dependent exponential \( {\rm H}_\infty \) synchronization of a class of delayed neural networks. Chaos Solitons Fractals 41(3), 1125–1135 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Wen, G., Wang, Q.G., Lin, C., Han, X., Li, G.: Synthesis for robust synchronization of chaotic systems under output feedback control with multiple random delays. Chaos Solitons Fractals 29(5), 1142–1146 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Cao, J., Lu, J.: Adaptive synchronization of neural networks with or without time-varying delay. Chaos 16, 013133 (2006)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Karimi, H.R., Gao, H.: New delay-dependent exponential \( {\rm H}_\infty \) synchronization for uncertain neural networks with mixed time delays. IEEE Trans. Syst. Man Cybernet. B 40(1), 173–185 (2010)CrossRefGoogle Scholar
  41. 41.
    Wang, L., Cao, J.: Global robust point dissipativity of interval neural networks with mixed time-varying delays. Nonlinear Dynam. 55(1–2), 169–178 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    Kolmanovskii, V., Koroleva, N., Maizenberg, T., Mao, X., Matasov, A.: Neutral stochastic differential delay equations with Markovian switching. Stoch. Anal. Appl. 21, 819–847 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Karimi, H.R.: Observer-based mixed s control design for linear systems with time-varying delays: An LMI approach. Int. J. Contr. Automat. Syst. 6(1), 1–14 (2008)Google Scholar
  44. 44.
    Zečević, A.I., Šiljak, D.D.: Design of robust static output feedback for large-scale systems. IEEE Trans. Automat. Contr. 49(11), 2040–2044 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Engineering, Faculty of Engineering and ScienceUniversity of AgderGrimstadNorway

Personalised recommendations