Agents in Approximate Environments

  • Barbara Dunin-Kęplicz
  • Andrzej Szałas
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7010)


The starting point of this research is the multimodal approach to modeling multiagent systems, especially Beliefs, Goals and Intention systems. Such an approach is suitable for specifying and verifying many subtle aspects of agents’ informational and motivational attitudes.

However, in this chapter we make a shift in a perspective. More precisely, we propose the method of embedding multimodal approaches into a form of approximate reasoning suitable for modeling perception, namely a similarity-based approximate reasoning. We argue that this formalism allows one to both keep the intuitive semantics compatible with that of multimodal logics as well as to model and implement phenomena occurring at the perception level.


Modal Logic Multiagent System Similarity Relation Epistemic Logic Dynamic Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley Pub. Co. (1996)Google Scholar
  2. 2.
    Demri, S., Orłowska, E.: Incomplete Information: Structure, Inference, Complexity. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  3. 3.
    Doherty, P., Dunin-K\k{e}plicz, B., Szałas, A.: Dynamics of Approximate Information Fusion. In: Kryszkiewicz, M., Peters, J.F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 668–677. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Doherty, P., Łukaszewicz, W., Skowron, A., Szałas, A.: Knowledge Representation Techniques. A Rough Set Approach. Studies in Fuziness and Soft Computing, vol. 202. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  5. 5.
    Doherty, P., Łukaszewicz, W., Szałas, A.: Similarity, Approximations and Vagueness. In: Ślęzak, D., Wang, G., Szczuka, M.S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 541–550. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Doherty, P., Łukaszewicz, W., Szałas, A.: Tolerance Spaces and Approximative Representational Structures. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 475–489. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Doherty, P., Łukaszewicz, W., Szałas, A.: Approximative query techniques for agents with heterogeneous ontologies and perceptive capabilities. In: Dubois, D., Welty, C., Williams, M.-A. (eds.) Proceedings of 9th International Conference on the Principles of Knowledge Representation and Reasoning, KR 2004, pp. 459–468. AAAI Press (2004)Google Scholar
  8. 8.
    Doherty, P., Łukaszewicz, W., Szałas, A.: Communication between agents with heterogeneous perceptual capabilities. Journal of Information Fusion 8(1), 56–69 (2007)CrossRefGoogle Scholar
  9. 9.
    Doherty, P., Magnusson, M., Szałas, A.: Approximate databases: A support tool for approximate reasoning. Journal of Applied Non-Classical Logics 16(1-2), 87–118 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Doherty, P., Szałas, A.: On the Correspondence between Approximations and Similarity. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 143–152. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Dunin-Kęplicz, B., Nguyen, A., Szałas, A.: Tractable approximate knowledge fusion using the Horn fragment of serial propositional dynamic logic. International Journal of Approximate Reasoning 51(3), 346–362 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dunin-Kęplicz, B., Szałas, A.: Towards Approximate BGI Systems. In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS 2007. LNCS (LNAI), vol. 4696, pp. 277–287. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Dunin-Kęplicz, B., Verbrugge, R.: Collective intentions. Fundamenta Informaticae 51(3), 271–295 (2002)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Dunin-Kęplicz, B., Verbrugge, R.: Evolution of collective commitments during teamwork. Fundamenta Informaticae 56, 329–371 (2003)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Dunin-Kęplicz, B., Verbrugge, R.: A tuning machine for cooperative problem solving. Fundamenta Informaticae 63, 283–307 (2004)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Dunin-Keplicz, B., Verbrugge, R.: Teamwork in Multi-Agent Systems: A Formal Approach. John Wiley & Sons, Ltd. (2010)Google Scholar
  17. 17.
    Dziubiński, M., Verbrugge, R., Dunin-Kęplicz, B.: Complexity issues in multiagent logics. Fundamenta Informaticae 75(1-4), 239–262 (2007)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Fagin, R., Halpern, J., Moses, Y., Vardi, M.: Reasoning about Knowledge. MIT Press, Cambridge (1995)zbMATHGoogle Scholar
  19. 19.
    Fisher, M., Ladner, R.: Propositional Dynamic Logic of regular programs. Journal of Computer and System Sciences 18, 194–211 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Grabowski, M., Szałas, A.: A Technique for Learning Similarities on Complex Structures with Applications to Extracting Ontologies. In: Szczepaniak, P.S., Kacprzyk, J., Niewiadomski, A. (eds.) AWIC 2005. LNCS (LNAI), vol. 3528, pp. 183–189. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Halpern, J.: Intransitivity and vagueness. In: Dubois, D., Welty, C., Williams, M.-A. (eds.) Proc. of 9th Int. Conf. KR 2004, pp. 121–129. AAAI Press (2004)Google Scholar
  22. 22.
    Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)Google Scholar
  23. 23.
    McCarthy, J.: Approximate objects and approximate theories. In: Cohn, A., Giunchiglia, F., Selman, B. (eds.) Proc. 7th International Conf. on Principles of Knowledge Representation and Reasoning, KR 2000, pp. 519–526. Morgan Kaufmann Pub., Inc., San Francisco (2000)Google Scholar
  24. 24.
    Meyer, J.-J., van der Hoek, W.: Epistemic Logic for AI and Theoretical Computer Science. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  25. 25.
    Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)zbMATHGoogle Scholar
  26. 26.
    Peleg, D.: Concurrent dynamic logic. In: STOC 1985: Proceedings of the 7th Annual ACM Symposium on Theory of Computing, pp. 232–239. ACM Press (1985)Google Scholar
  27. 27.
    Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27, 245–253 (1996)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Słowiński, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Trans. on Data and Knowledge Engineering 12(2), 331–336 (2000)CrossRefGoogle Scholar
  29. 29.
    Williamson, T.: Vagueness. Routledge (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Barbara Dunin-Kęplicz
    • 1
    • 2
  • Andrzej Szałas
    • 1
    • 3
  1. 1.Institute of InformaticsWarsaw UniversityWarsawPoland
  2. 2.Institute of Computer SciencePolish Academy of SciencesWarsawPoland
  3. 3.Department of Computer and Information ScienceUniversity of LinköpingLinköpingSweden

Personalised recommendations