Advertisement

Holographic Optical Tweezers

  • Mike WoerdemannEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Holographic optical tweezers (HOT) employ a relatively simple form of holographic beam-shaping that produces discrete, point-like intensity peaks in the optical trapping plane, each of which acts as a single optical tweezer. For each tweezer, lateral position and axial position can be determined individually by means of accordingly prepared holograms that split the incident wave front and set propagation angles and divergence properties. After a short discussion on the fundamental concepts of HOT and a brief review of the extensive literature emphasising applications in colloidal sciences, this chapter introduces two novel applications of HOT. The first application addresses the urgent demand for full position and orientation control on rod-shaped bacteria.

Keywords

Optical Tweezer Spatial Light Modulator Optical Trap Orientation Control Diffractive Optical Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agarwal R, Ladavac K, Roichman Y, Yu G, Lieber C, Grier D (2005) Manipulation and assembly of nanowires with holographic optical traps. Opt Express 13:8906–8912ADSCrossRefGoogle Scholar
  2. Alpmann C (2010) Maßgeschneiderte Lichtfelder zur mehrdimensionalen Manipulation von Materie in optischen Pinzetten. Master’s thesis, Westfälische Wilhelms-Universität MünsterGoogle Scholar
  3. Aranson I, Sokolov A, Kessler J, Goldstein R (2007) Model for dynamical coherence in thin films of self-propelled microorganisms. Phys Rev E 75:040901ADSCrossRefGoogle Scholar
  4. Ashkin A, Dziedzic J (1987) Optical trapping and manipulation of viruses and bacteria. Science 235:1517–1520ADSCrossRefGoogle Scholar
  5. Ashkin A, Dziedzic J, Yamane T (1987) Optical trapping and manipulation of single cells using infrared laser beams. Nature 330:769–771ADSCrossRefGoogle Scholar
  6. Benito D, Carberry D, Simpson S, Gibson G, Padgett M, Rarity J, Miles M, Hanna S (2008) Constructing 3D crystal templates for photonic band gap materials using holographic optical tweezers. Opt Express 16:13005–13015ADSCrossRefGoogle Scholar
  7. Berg H (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54CrossRefGoogle Scholar
  8. Bingelyte V, Leach J, Courtial J, Padgett M (2003) Optically controlled three-dimensional rotation of microscopic objects. Appl Phys Lett 82:829–831ADSCrossRefGoogle Scholar
  9. Braun P, Rinne S, Garcia-Santamaria F (2006) Introducing defects in 3D photonic crystals: State of the art. Adv Mater 18:2665–2678CrossRefGoogle Scholar
  10. Bruhwiler D, Calzaferri G (2004) Molecular sieves as host materials for supramolecular organization. Micropor Mesopor Mater 72:1–23CrossRefGoogle Scholar
  11. Busby M, Blum C, Tibben M, Fibikar S, Calzaferri G, Subramaniam V, De Cola L (2008) Time, space, and spectrally resolved studies on J-aggregate interactions in zeolite L nanochannels. J Am Chem Soc 130:10970–10976CrossRefGoogle Scholar
  12. Calzaferri G, Meallet-Renault R, Bruhwiler D, Pansu R, Dolamic I, Dienel T, Adler P, Li H, Kunzmann A (2011) Designing dye-nanochannel antenna hybrid materials for light harvesting, transport and trapping. ChemPhysChem 12:580–594CrossRefGoogle Scholar
  13. Carmon G, Feingold M (2011) Rotation of single bacterial cells relative to the optical axis using optical tweezers. Opt Lett 36:40–42ADSCrossRefGoogle Scholar
  14. Cisneros L, Cortez R, Dombrowski C, Goldstein R, Kessler J (2007) Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations. Exp Fluids 43: 737–753CrossRefGoogle Scholar
  15. Cizmar T, Mazilu M, Dholakia K (2010) In situ wavefront correction and its application to micromanipulation. Nat Photonics 4:388–394ADSCrossRefGoogle Scholar
  16. Crocker J (1997) Measurement of the hydrodynamic corrections to the brownian motion of two colloidal spheres. J Chem Phys 106:2837–2840ADSCrossRefGoogle Scholar
  17. Crocker J, Grier D (1994) Microscopic measurement of the pair interaction potential of charge-stabilized colloid. Phys Rev Lett 73:352–355ADSCrossRefGoogle Scholar
  18. Curtis J, Koss B, Grier D (2002) Dynamic holographic optical tweezers. Opt Commun 207:169–175ADSCrossRefGoogle Scholar
  19. Curtis J, Schmitz C, Spatz J (2005) Symmetry dependence of holograms for optical trapping. Opt Lett 30:2086–2088ADSCrossRefGoogle Scholar
  20. Darnton N, Turner L, Breuer K, Berg H (2004) Moving fluid with bacterial carpets. Biophys J 86:1863–1870CrossRefGoogle Scholar
  21. Dasgupta R, Mohanty S, Gupta P (2003) Controlled rotation of biological microscopic objects using optical line tweezers. Biotechnol Lett 25:1625–1628CrossRefGoogle Scholar
  22. El-Daly S (1999) Spectral, lifetime, fluorescence quenching, energy transfer and photodecomposition of \(N,N^{\prime}\)-bis(2,6-dimethyl phenyl)-3,4:9,10-perylentetracarboxylic diimide (DXP). Spectrochim Acta, Part A 55:143–152Google Scholar
  23. Elemans J, Rowan A, Nolte R (2003) Mastering molecular matter. Supramolecular architectures by hierarchical self-assembly. J Mater Chem 13:2661–2670CrossRefGoogle Scholar
  24. Fienup J (1982) Phase retrieval algorithms—a comparison. Appl Opt 21:2758–2769ADSCrossRefGoogle Scholar
  25. Gerchberg R, Saxton W (1972) A practical algorithm for determination of phase from image and diffraction plane pictures. Optik 35:237–246Google Scholar
  26. Gibson G, Carberry D, Whyte G, Leach J, Courtial J, Jackson J, Robert D, Miles M, Padgett M (2008) Holographic assembly workstation for optical manipulation. Appl Phys B-Lasers O 10:044009Google Scholar
  27. Goodman J, Silvestri A (1970) Some effects of Fourier-domain phase quantization. IBM J Res Dev 14:478zbMATHCrossRefGoogle Scholar
  28. Grier D (1997) Optical tweezers in colloid and interface science. Curr Opin Colloid In 2:264–270CrossRefGoogle Scholar
  29. Gyrya V, Aranson I, Berlyand L, Karpeev D (2010) A model of hydrodynamic interaction between swimming bacteria. Bull Math Biol 72:148–183MathSciNetzbMATHCrossRefGoogle Scholar
  30. Haist T, Schönleber M, Tiziani H (1997) Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays. Opt Commun 140:299–308ADSCrossRefGoogle Scholar
  31. Hesseling C, Woerdemann M, Hermerschmidt A, Denz C (2011) Controlling ghost traps in holographic optical tweezers. Opt Lett 36:3657–3659ADSCrossRefGoogle Scholar
  32. Hörner F (2010) Dreidimensionale, optisch induzierte manipulation von mikropartikeln. Master’s thesis, Westfälische Wilhelms-Universität MünsterGoogle Scholar
  33. Hörner F, Woerdemann M, Müller S, Maier B, Denz C (2010) Full 3D translational and rotational optical control of multiple rod-shaped bacteria. J Biophoton 3:468–475CrossRefGoogle Scholar
  34. Ito M, Terahara N, Fujinami S, Krulwich T (2005) Properties of motility in Bacillus subtilis powered by the H+-coupled MotAB flagellar stator, Na+-coupled MotPS or hybrid stators MotAS or MotPB. J Mol Biol 352:396–408CrossRefGoogle Scholar
  35. Kim M, Breuer K (2007) Controlled mixing in microfluidic systems using bacterial chemotaxis. Anal Chem 79:955–959CrossRefGoogle Scholar
  36. Kim M, Bird J, van Parys A, Breuer K, Powers T (2003) A macroscopic scale model of bacterial flagellar bundeling. Proc Natl. Acad Sci U.S.A. 100:15485ADSGoogle Scholar
  37. Kolter R, Greenberg E (2006) Microbial sciences—the superficial life of microbes. Nature 441:300–302ADSCrossRefGoogle Scholar
  38. Korda P, Spalding G, Dufresne E, Grier D (2002) Nanofabrication with holographic optical tweezers. Rev Sci Instrum 73:1956–1957ADSCrossRefGoogle Scholar
  39. Leach J, Wulff K, Sinclair G, Jordan P, Courtial J, Thomson L, Gibson G, Karunwi K, Cooper J, Laczik ZJ, Padgett M (2006) Interactive approach to optical tweezers control. Appl Opt 45: 897–903ADSCrossRefGoogle Scholar
  40. Liesener J, Reicherter M, Haist T, Tiziani H (2000) Multi-functional optical tweezers using computer-generated holograms. Opt Commun 185:77–82ADSCrossRefGoogle Scholar
  41. Mas J, Roth M, Martin-Badosa E, Montes-Usategui M (2011) Adding functionalities to precomputed holograms with random mask multiplexing in holographic optical tweezers. Appl Opt 50:1417–1424ADSCrossRefGoogle Scholar
  42. Megelski S, Calzaferri G (2001) Tuning the size and shape of zeolite L-based inorganic-organic host-guest composites for optical antenna systems. Adv Funct Mater 11:277–286CrossRefGoogle Scholar
  43. Meiners J, Quake S (1999) Direct measurement of hydrodynamic cross correlations between two particles in an external potential. Phys Rev Lett 82:2211–2214ADSCrossRefGoogle Scholar
  44. Melville H, Milne G, Spalding G, Sibbett W, Dholakia K, McGloin D (2003) Optical trapping of three-dimensional structures using dynamic holograms. Opt Express 11:3562–3567ADSCrossRefGoogle Scholar
  45. Min T, Mears P, Chubiz L, Rao C, Golding I, Chemla Y (2009) High-resolution, long-term characterization of bacterial motility using optical tweezers. Nat Methods 6:831–835CrossRefGoogle Scholar
  46. Miyamoto K (1961) The phase Fresnel lens. J Opt Soc Am 51:17–20MathSciNetADSCrossRefGoogle Scholar
  47. Moh K, Lee W, Cheong W, Yuan X (2005) Multiple optical line traps using a single phase-only rectangular ridge. Appl Phys B 80:973–976ADSCrossRefGoogle Scholar
  48. Montes-Usategui M, Pleguezuelos E, Andilla J, Martin-Badosa E (2006) Fast generation of holographic optical tweezers by random mask encoding of Fourier components. Opt Express 14:2101–2107ADSCrossRefGoogle Scholar
  49. Neuman K, Chadd E, Liou G, Bergman K, Block S (1999) Characterization of photodamage to Escherichia coli in optical traps. Biophys J 77:2856–2863CrossRefGoogle Scholar
  50. O’Neil A, Padgett M (2002) Rotational control within optical tweezers by use of a rotating aperture. Opt Lett 27:743–745ADSCrossRefGoogle Scholar
  51. Ordal G, Goldman D (1975) Chemotaxis away from uncouplers of oxidative phosphorylation in Bacillus subtilis. Science 189:802–805ADSCrossRefGoogle Scholar
  52. Paterson L, MacDonald M, Arlt J, Sibbett W, Bryant P, Dholakia K (2001) Controlled rotation of optically trapped microscopic particles. Science 292:912–914ADSCrossRefGoogle Scholar
  53. Polin M, Ladavac K, Lee S, Roichman Y, Grier D (2005) Optimized holographic optical traps. Opt Express 13:5831–5845ADSCrossRefGoogle Scholar
  54. Purcell E (1977) Life at low reynolds-number. Am J Phys 45:3–11ADSCrossRefGoogle Scholar
  55. Reichert M, Stark H (2004) Hydrodynamic coupling of two rotating spheres trapped in harmonic potentials. Phys Rev E: Stat Nonlinear Soft Matter Phys 69:031407ADSCrossRefGoogle Scholar
  56. Roichman Y, Grier D (2005) Holographic assembly of quasicrystalline photonic heterostructures. Opt Express 13:5434–5439ADSCrossRefGoogle Scholar
  57. Rosenberg E, Ron E (1999) High- and low-molecular-mass microbial surfactants. Appl Microbiol Biot 52:154–162CrossRefGoogle Scholar
  58. Ruiz A, Li H, Calzaferri G (2006) Organizing supramolecular functional dye-zeolite crystals. Angew Chem Int Ed 45:5282–5287CrossRefGoogle Scholar
  59. Sato S, Ishigure M, Inaba H (1991) Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd-YAG laser-beams. Electron Lett 27:1831–1832CrossRefGoogle Scholar
  60. Segur J, Oberstar H (1951) Viscosity of glycerol and its aqueous solutions. Ind Eng Chem 43:2117–2120CrossRefGoogle Scholar
  61. Simpson SH, Hanna S (2011) Optical trapping of microrods: variation with size and refractive index. J Opt Soc Am A 28:850–858ADSCrossRefGoogle Scholar
  62. Sinclair G, Jordan P, Courtial J, Padgett M, Cooper J, Laczik Z (2004) Assembly of 3-dimensional structures using programmable holographic optical tweezers. Opt Express 12:5475–5480ADSCrossRefGoogle Scholar
  63. Sinclair G, Jordan P, Leach J, Padgett M, Cooper J (2004) Defining the trapping limits of holographical optical tweezers. J Mod Opt 51:409–414ADSCrossRefGoogle Scholar
  64. Sokolov A, Apodaca M, Grzybowski B, Aranson I (2010) Swimming bacteria power microscopic gears. Proc Natl Acad Sci U.S.A. 107:969–974ADSCrossRefGoogle Scholar
  65. Tanaka Y, Hirano K, Nagata H, Ishikawa M (2007) Real-time three-dimensional orientation control of non-spherical micro-objects using laser trapping. Electron Lett 43:412–414CrossRefGoogle Scholar
  66. Tanaka Y, Kawada H, Hirano K, Ishikawa M, Kitajima H (2008) Automated manipulation of non-spherical micro-objects using optical tweezers combined with image processing techniques. Opt Express 16:15115–15122ADSCrossRefGoogle Scholar
  67. Woerdemann M, Gläsener S, Hörner F, Devaux A, De Cola L, Denz C (2010) Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers. Adv Mater 22:4176–4179CrossRefGoogle Scholar
  68. Woerdemann M, Alpmann C, Hoerner F, Devaux A, De Cola L, Denz C (2010) Optical control and dynamic patterning of zeolites. SPIE Proc 7762:77622EADSCrossRefGoogle Scholar
  69. Woerdemann M, Devaux A, De Cola L, Denz C (2010) Managing hierarchical supramolecular organization with holographic optical tweezers. OPN (Optics in 2010) 21:40Google Scholar
  70. Woerdemann M, Alpmann C, Denz C (2012) Optical imaging and metrology, chapter three-dimensional particle control by holographic optical tweezers. Wiley-VCH Verlag, WeinheimGoogle Scholar
  71. Wolgemuth C (2008) Collective swimming and the dynamics of bacterial turbulence. Biophys J 95:1564–1574CrossRefGoogle Scholar
  72. Zwick S, Haist T, Warber M, Osten W (2010) Dynamic holography using pixelated light modulators. Appl Opt 49:F47–F58CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Applied PhysicsUniversity of MünsterMünsterGermany

Personalised recommendations