Ince-Gaussian Beams for the Optical Organisation of Microparticles

  • Mike WoerdemannEmail author
Part of the Springer Theses book series (Springer Theses)


Self-similar beams are by far the most prominent class of laser beams as they are natural solutions to the resonator problem and hence widely available as output of commercial and research lasers.


Focal Plane Silica Sphere Optical Tweezer Optical Trapping Optical Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Allen L, Beijersbergen M, Spreeuw R, Woerdman J (1992) Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes. Phys Rev A 45:8185–8189ADSCrossRefGoogle Scholar
  2. Alpmann C (2010) Maßgeschneiderte Lichtfelder zur mehrdimensionalen Manipulation von Materie in optischen Pinzetten. Master’s thesis, Westfälische Wilhelms-Universität MünsterGoogle Scholar
  3. Arscott F (1964) Periodic differential equations. Pergamon Press, OxfordzbMATHGoogle Scholar
  4. Bandres M, Gutierrez-Vega J (2004) Ince Gaussian beams. Opt Lett 29:144–146ADSCrossRefGoogle Scholar
  5. Bandres M, Gutierrez-Vega J (2004) Ince-Gaussian modes of the paraxial wave equation and stable resonators. J Opt Soc Am A 21:873–880ADSCrossRefGoogle Scholar
  6. Basistiy I, Soskin M, Vasnetsov M (1995) Optical wave-front dislocations and their properties. Opt Commun 119:604–612ADSCrossRefGoogle Scholar
  7. Behrens S, Grier D (2001) The charge of glass and silica surfaces. J Chem Phys 115:6716–6721ADSCrossRefGoogle Scholar
  8. Bentley J, Davis J, Bandres M, Gutierrez-Vega J (2006) Generation of helical Ince-Gaussian beams with a liquid-crystal display. Opt Lett 31:649–651ADSCrossRefGoogle Scholar
  9. Dholakia K, Zemanek P (2010) Colloquium: gripped by light: optical binding. Rev Mod Phys 82:1767ADSCrossRefGoogle Scholar
  10. Heckenberg N, McDuff R, Smith C, White A (1992) Generation of optical phase singularities by computer-generated holograms. Opt Lett 17:221–223ADSCrossRefGoogle Scholar
  11. Ince E (1923) A linear differential equation with periodic coefficients. Proc London Math Soc 23:56–74MathSciNetCrossRefGoogle Scholar
  12. Israelachvili J (2011) Intramolecular and surface forces. Academic, LondonGoogle Scholar
  13. Kennedy S, Szabo M, Teslow H, Porterfield J, Abraham E (2002) Creation of Laguerre-Gaussian laser modes using diffractive optics. Phys Rev A 66:043801ADSCrossRefGoogle Scholar
  14. Machavariani G, Davidson N, Hasman E, Blit S, Ishaaya A, Friesem A (2002) Efficient conversion of a Gaussian beam to a high purity helical beam. Opt Commun 209:265–271ADSCrossRefGoogle Scholar
  15. Mohanty S, Mohanty K, Berns M (2008) Organization of microscale objects using a microfabricated optical fiber. Opt Lett 33:2155–2157ADSCrossRefGoogle Scholar
  16. Saleh B, Teich M (2008) Grundlagen der Photonik. Wiley-VCH, BerlinGoogle Scholar
  17. Sato S, Ishigure M, Inaba H (1991) Optical trapping and rotational manipulation of microscopic particles and biological cells using higher-order mode Nd-YAG laser-beams. Electron Lett 27:1831–1832CrossRefGoogle Scholar
  18. Schweiger G, Nett R, Weigel T (2007) Microresonator array for high-resolution spectroscopy. Opt Lett 32:2644–2646ADSCrossRefGoogle Scholar
  19. Soria S, Berneschi S, Brenci M, Cosi F, Conti G, Pelli S, Righini G (2011) Optical microspherical resonators for biomedical sensing. Sensors 11:785–805CrossRefGoogle Scholar
  20. Whyte G, Courtial J (2005) Experimental demonstration of holographic three-dimensional light shaping using a Gerchberg Saxton algorithm. New J Phys 7:117–128CrossRefGoogle Scholar
  21. Woerdemann M, Alpmann C, Denz C (2011) Optical assembly of microparticles into highly ordered structures using Ince-Gaussian beams. Appl Phys Lett 98:111101ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Applied PhysicsUniversity of MünsterMünsterGermany

Personalised recommendations