Non-Diffracting Beams for the Three-Dimensional Moulding of Matter

  • Mike WoerdemannEmail author
Part of the Springer Theses book series (Springer Theses)


The class of propagation-invariant light fields or non-diffracting beams features the unique property of a transverse beam profile that does not alter during propagation. This behaviour is in strong contrast to other light fields, including Gaussian beams or complex light fields in holographic optical tweezers, that inevitably spread during propagation and hence restrict optical micromanipulation to the vicinity of the focal plane. In particular with high numerical aperture microscope objectives, which are essential for diffraction limited microscopic observation, the tight focusing results in strong spreading and short axial extension of optical trapping landscapes.


Light Field Bessel Beam Optical Vortex Fourier Plane Transverse Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alpmann C (2010) Maßgeschneiderte Lichtfelder zur mehrdimensionalen Manipulation von Materie in optischen Pinzetten. Master’s thesis, Westfälische Wilhelms-Universität MünsterGoogle Scholar
  2. Alpmann C, Bowman R, Woerdemann M, Padgett M, Denz C (2010) Mathieu beams as versatile light moulds for 3D micro particle assemblies. Opt Express 18:26084–26091ADSCrossRefGoogle Scholar
  3. Arlt J, Garces-Chavez V, Sibbett W, Dholakia K (2001) Optical micromanipulation using a Bessel light beam. Opt Commun 197:239–245ADSCrossRefGoogle Scholar
  4. Arscott F (1964) Periodic differential equations. Pergamon Press, OxfordzbMATHGoogle Scholar
  5. Baumgartl J, Mazilu M, Dholakia K (2008) Optically mediated particle clearing using Airy wavepackets. Nat Photonics 2:675–678ADSCrossRefGoogle Scholar
  6. Bélanger P, Rioux M (1978) Ring pattern of a lens-axicon doublet illuminated by a Gaussian beam. Appl Opt 17:1080–1088ADSCrossRefGoogle Scholar
  7. Boguslawski M, Rose P, Denz C (2011) Nondiffracting kagome lattice. Appl Phys Lett 98:061111ADSCrossRefGoogle Scholar
  8. Bowman R, Gibson G, Padgett M (2010) Particle tracking stereomicroscopy in optical tweezers: control of trap shape. Opt Express 18:11785–11790ADSCrossRefGoogle Scholar
  9. Chavez-Cerda S, Gutierrez-Vega J, New G (2001) Elliptic vortices of electromagnetic wave fields. Opt Lett 26:1803–1805ADSCrossRefGoogle Scholar
  10. Chavez-Cerda S, Padgett M, Allison I, New G, Gutierrez-Vega J, O’Neil A, MacVicar I, Courtial J (2002) Holographic generation and orbital angular momentum of high-order Mathieu beams. J Opt B: Quantum Semiclass Opt 4:S52–S57ADSCrossRefGoogle Scholar
  11. Davis J, Guertin J, Cottrell D (1993) Diffraction-free beams generated with programmable spatial light modulators. Appl Opt 32:6368–6370ADSCrossRefGoogle Scholar
  12. Davis J, Cottrell D, Campos J, Yzuel M, Moreno I (1999) Encoding amplitude information onto phase-only filters. Appl Opt 38:5004–5013ADSCrossRefGoogle Scholar
  13. Durnin J (1987) Exact solutions for nondiffracting beams. I. The scalar theory. J Opt Soc Am A 4:651–654ADSCrossRefGoogle Scholar
  14. Durnin J, Miceli J Jr., Eberly J (1987) Diffraction-free beams. Phys Rev Lett 58:1499–1501ADSCrossRefGoogle Scholar
  15. Garcès-Chà àvez V, McGloin D, Melville H, Sibbett W, Dholakia K (2002) Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam. Nature 419:145–147ADSCrossRefGoogle Scholar
  16. Garces-Chavez V, Volke-Sepulveda K, Chavez-Cerda S, Sibbett W, Dholakia K (2002) Transfer of orbital angular momentum to an optically trapped low-index particle. Phys Rev A 66:063402ADSCrossRefGoogle Scholar
  17. Garces-Chavez V, McGloin D, Padgett M, Dultz W, Schmitzer H, Dholakia K (2003) Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. Phys Rev Lett 91:093602ADSCrossRefGoogle Scholar
  18. Gori F, Guattari G, Padovani C (1987) Bessel-Gauss beams. Opt Commun 64:491–495ADSCrossRefGoogle Scholar
  19. Gutierrez-Vega J, Bandres M (2005) Helmholtz-Gauss waves. J Opt Soc Am A 22:289–298MathSciNetADSCrossRefGoogle Scholar
  20. Gutierrez-Vega J, Iturbe-Castillo M, Chavez-Cerda S (2000) Alternative formulation for invariant optical fields: Mathieu beams. Opt Lett 25:1493–1495ADSCrossRefGoogle Scholar
  21. He H, Friese M, Heckenberg N, Rubinsztein-Dunlop H (1995) Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys Rev Lett 75:826–829ADSCrossRefGoogle Scholar
  22. Lautanen J, Kettunen V, Laakkonen P, Turunen J (2000) High-efficiency production of propagation-invariant spot arrays . J Opt Soc Am A 17:2208–2215ADSCrossRefGoogle Scholar
  23. Lopez-Mariscal C, Gutierrez-Vega J, Milne G, Dholakia K (2006) Orbital angular momentum transfer in helical Mathieu beams. Opt Express 14:4182–4187ADSCrossRefGoogle Scholar
  24. Mazilu M, Stevenson D, Gunn-Moore F, Dholakia K (2009) Light beats the spread: non-diffracting beams. Laser Photon Rev 4:529–547CrossRefGoogle Scholar
  25. McGloin D, Dholakia K (2005) Bessel beams: diffraction in a new light. Contemp Phys 46:15–28ADSCrossRefGoogle Scholar
  26. McLeod J (1954) The axicon: a new type of optical element. J Opt Soc Am 44:592ADSCrossRefGoogle Scholar
  27. O’Neil AT, MacVicar I, Allen L, Padgett MJ (2002) Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys Rev Lett 88:053601ADSCrossRefGoogle Scholar
  28. Scott G, McArdle N (1992) Efficient generation of nearly diffraction-free beams using an axicon. Opt Eng 31:2640–2643ADSCrossRefGoogle Scholar
  29. Tatarkova S, Sibbett W, Dholakia K (2003) Brownian particle in an optical potential of the washboard type. Phys Rev Lett 91:038101ADSCrossRefGoogle Scholar
  30. Turunen J, Friberg A (2010) Chapter: Propagation-invariant optical fields. In: Progress in optics, vol 54, Elsevier B. V, Amsterdam, pp 1–88Google Scholar
  31. Turunen J, Vasara A, Friberg A (1988) Holographic generation of diffraction-free beams . Appl Opt 27:3959–3962ADSCrossRefGoogle Scholar
  32. Turunen J, Vasara A, Friberg A (1991) Propagation invariance and self-imaging in variable-coherence optics. J Opt Soc Am A 8:282–289ADSCrossRefGoogle Scholar
  33. Vasara A, Turunen J, Friberg A (1989) Realization of general nondiffracting beams with computer-generated holograms. J Opt Soc Am A 6:1748–1754ADSCrossRefGoogle Scholar
  34. Volke-Sepulveda K, Garces-Chavez V, Chavez-Cerda S, Arlt J, Dholakia K (2002) Orbital angular momentum of a high-order Bessel light beam. J Opt B: Quantum Semiclass Opt 4:82–89ADSCrossRefGoogle Scholar
  35. Volke-Sepulveda K, Chavez-Cerda S, Garces-Chavez V, Dholakia K (2004) Three-dimensional optical forces and transfer of orbital angular momentum from multiringed light beams to spherical microparticles. J Opt Soc Am B 21:1749–1757ADSCrossRefGoogle Scholar
  36. Zwick S, Haist T, Warber M, Osten W (2010) Dynamic holography using pixelated light modulators. Appl Opt 49:F47–F58CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Applied PhysicsUniversity of MünsterMünsterGermany

Personalised recommendations