Counter-Propagating Traps by Optical Phase-Conjugation

  • Mike WoerdemannEmail author
Part of the Springer Theses book series (Springer Theses)


“Classical" optical tweezers employ one single laser beam that is strongly focussed by one lens. In spite of a long list of advantages, which are discussed comprehensively in Chap. 2, there are a number of situations where the requirement for high numerical aperture objectives is a serious obstacle or where the inherent asymmetry of the configuration is an issue. One well known solution is counter-propagating optical traps, which are widely used where long working distances, axially symmetric trapping potentials, or standing light waves are desired.


Pump Beam Light Field Optical Tweezer Signal Beam Optical Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156–159ADSCrossRefGoogle Scholar
  2. Ashkin A (2000) History of optical trapping and manipulation of small-neutral particle, atoms, and molecules. IEEE J Sel Top Quantum Electron 6:841–856CrossRefGoogle Scholar
  3. Ashkin A, Dziedzic J (1985) Observation of radiation-pressure trapping of particles by alternating light-beams. Phys Rev Lett 54:1245–1248ADSCrossRefGoogle Scholar
  4. Ashkin A, Dziedzic J, Bjorkholm J, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290ADSCrossRefGoogle Scholar
  5. Berghoff K (2010) Erzeugung von Mehrfachfallen und komplexen Fanggeometrien in dynamischen phasenkonjugierten gegenläufigen optischen Fallen. Master’s thesis, Westfälische Wilhelms-Universität MünsterGoogle Scholar
  6. Born M, Wolf E (1986) Principles of optics. Pergamon Press, OxfordGoogle Scholar
  7. Bowman R, Jesacher A, Thalhammer G, Gibson G, Ritsch-Marte M, Padgett M (2011) Position clamping in a holographic counterpropagating optical trap. Opt Express 19:9908–9914ADSCrossRefGoogle Scholar
  8. Boyd R (1992) Nonlinear optics. Academic, San DiegoGoogle Scholar
  9. Chiou A (1999) Photorefractive phase-conjugate optics for image processing, trapping, and manipulation of microscopic objects. IEEE Proc 87:2074–2085CrossRefGoogle Scholar
  10. Constable A, Kim J, Mervis J, Zarinetchi F, Prentiss M (1993) Demonstration of a fiber-optical light-force trap. Opt Lett 18:1867–1869ADSCrossRefGoogle Scholar
  11. Croningolomb M (1991) Nonlinear optics and phase conjugation in photorefractive materials. J Cryst Growth 109:345–352CrossRefGoogle Scholar
  12. Dam J, Rodrigo P, Perch-Nielsen I, Alonzo C, Glückstad J (2007a) Computerized “drag-and-drop" alignment of GPC-based optical micromanipulation system. Opt Express 15:1923–1931ADSCrossRefGoogle Scholar
  13. Dam J, Rodrigo P, Perch-Nielsen I, Glückstad J (2007b) Fully automated beam-alignment and single stroke guided manual alignment of counter-propagating multi-beam based optical micromanipulation systems. Opt Express 15:7968–7973ADSCrossRefGoogle Scholar
  14. Dholakia K, Reece P (2006) Optical micromanipulation takes hold. Nano Today 1:18–27CrossRefGoogle Scholar
  15. Feinberg J (1982) Self-pumped, continuous-wave phase conjugator using internal-reflection. Opt Lett 7:486–488ADSCrossRefGoogle Scholar
  16. Feinberg J (1983) Continuous-wave self-pumped phase conjugator with wide field of view. Opt Lett 8:480–482ADSCrossRefGoogle Scholar
  17. Feinberg J, Hellwarth R (1980) Phase-conjugating mirror with continuous-wave gain. Opt Lett 5:519–521ADSCrossRefGoogle Scholar
  18. Fisher R (ed) (1983) Optical phase conjugation. Academic, New YorkGoogle Scholar
  19. Guck J, Ananthakrishnan R, Cunningham CC, Käs J (2002) Stretching biological cells with light. J Phys Condens Matter 14:4843–4856ADSCrossRefGoogle Scholar
  20. He G (2002) Optical phase conjugation: principles, techniques, and applications. Prog Quantum Electron 26:131–191ADSCrossRefGoogle Scholar
  21. Hellwarth R (1977) Generation of time-reversed wave fronts by nonlinear refraction. J Opt Soc Am 67:1–3ADSCrossRefGoogle Scholar
  22. Hörner F, Woerdemann M, Müller S, Maier B, Denz C (2010) Full 3D translational and rotational optical control of multiple rod-shaped bacteria. J Biophotonics 3:468–475CrossRefGoogle Scholar
  23. Jonas A, Zemanek P (2008) Light at work: the use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 29:4813–4851CrossRefGoogle Scholar
  24. Martin-Badosa E, Montes-Usategui M, Carnicer A, Andilla J, Pleguezuelos E, Juvells I (2007) Design strategies for optimizing holographic optical tweezers set-ups. J Opt A: Pure Appl Opt 9:S267–S277Google Scholar
  25. Neuman K, Block S (2004) Optical trapping. Rev Sci Instrum 75:2787–2809ADSCrossRefGoogle Scholar
  26. Neuman K, Chadd E, Liou G, Bergman K, Block S (1999) Characterization of photodamage to Escherichia coli in optical traps. Biophys J 77:2856–2863CrossRefGoogle Scholar
  27. Petrovic M, Beli M, Denz C, Kivshar Y (2011) Counterpropagating optical beams and solitons. Laser Photonics Rev 5:214–233CrossRefGoogle Scholar
  28. Rodrigo P, Daria V, Gluckstad J (2005) Four-dimensional optical manipulation of colloidal particles. Appl Phys Lett 86:074103ADSCrossRefGoogle Scholar
  29. Rodrigo P, Perch-Nielsen I, Glückstad J (2006) Three-dimensional forces in GPC-based counterpropagating-beam traps. Opt Express 14:5812–5822ADSCrossRefGoogle Scholar
  30. Rytz D, Stephens R, Wechsler B, Keirstead M, Baer T (1990) Efficient self-pumped phase conjugation at near-infrared wavelengths using Cobalt-doped \(\hbox{BaTiO}_3\). Opt Lett 15:1279–1281Google Scholar
  31. Schonbrun E, Piestun R, Jordan P, Cooper J, Wulff K, Courtial J, Padgett M (2005) 3D interferometric optical tweezers using a single spatial light modulator. Opt Express 13:3777–3786ADSCrossRefGoogle Scholar
  32. Sinclair G, Jordan P, Leach J, Padgett M, Cooper J (2004) Defining the trapping limits of holographical optical tweezers. J Mod Opt 51:409–414ADSCrossRefGoogle Scholar
  33. Svoboda K, Block SM (1994) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285CrossRefGoogle Scholar
  34. Tauro S, Banas A, Palima D, Glückstad J (2010) Dynamic axial stabilization of counter-propagating beam-traps with feedback control. Opt Express 18:18217–18222ADSCrossRefGoogle Scholar
  35. Thalhammer G, Steiger R, Bernet S, Ritsch-Marte M (2011) Optical macro-tweezers: trapping of highly motile micro-organisms. J Opt 13:044024ADSCrossRefGoogle Scholar
  36. Wang W, Chiou A, Sonek G, Berns M (1997) Self-aligned dual-beam optical laser trap using photorefractive phase conjugation. J Opt Soc Am B 14:697–704ADSCrossRefGoogle Scholar
  37. Woerdemann M, Alpmann C, Denz C (2009) Self-pumped phase conjugation of light beams carrying orbital angular momentum. Opt Express 17:22791–22799ADSCrossRefGoogle Scholar
  38. Woerdemann M, Berghoff K, Denz C (2010) Dynamic multiple-beam counter-propagating optical traps using optical phase-conjugation. Opt Express 18:22348–57ADSCrossRefGoogle Scholar
  39. Woerdemann M, Gläsener S, Hörner F, Devaux A, De Cola L, Denz C (2010) Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers. Adv Mater 22:4176–4179CrossRefGoogle Scholar
  40. Woerdemann M, Alpmann C, Denz C (2012) Chapter: Three-dimensional particle control by holographic optical tweezers. In: Optical imaging and metrology. Wiley-VCH Verlag, Weinheim (to be published)Google Scholar
  41. Xavier J, Boguslawski M, Rose P, Joseph J, Denz C (2010) Reconfigurable optically induced quasicrystallographic three-dimensional complex nonlinear photonic lattice structures. Adv Mater 22:356CrossRefGoogle Scholar
  42. Xie P, Dai J, Wang P, Zhang H (1997) Self-pumped phase conjugation in photorefractive crystals: reflectivity and spatial fidelity. Phys Rev A 55:3092–3100ADSCrossRefGoogle Scholar
  43. Yeh P (1993) Introduction to photorefractive nonlinear optics. Wiley, New YorkGoogle Scholar
  44. Zemanek P, Jonas A, Sramek L, Liska M (1998) Optical trapping of Rayleigh particles using a Gaussian standing wave. Opt Commun 151:273–285ADSCrossRefGoogle Scholar
  45. Zemanek P, Jonas A, Sramek L, Liska M (1999) Optical trapping of nanoparticles and microparticles by a Gaussian standing wave. Opt Lett 24:1448–1450ADSCrossRefGoogle Scholar
  46. Zemanek P, Jonas A, Liska M (2002) Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave. J Opt Soc Am A 19:1025–1034ADSCrossRefGoogle Scholar
  47. Zemanek P, Jonas A, Jakl P, Jezek J, Sery M, Liska M (2003) Theoretical comparison of optical traps created by standing wave and single beam. Opt Commun 220:401–412ADSCrossRefGoogle Scholar
  48. Zozulya A (1993) Fanning and photorefractive self-pumped four-wave mixing geometries. IEEE J Quantum Electron 29:538–555ADSCrossRefGoogle Scholar
  49. Zwick S, Haist T, Miyamoto Y, He L, Warber M, Hermerschmidt A, Osten W (2009) Holographic twin traps. J Opt A: Pure Appl Opt 11:034011ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Applied PhysicsUniversity of MünsterMünsterGermany

Personalised recommendations