Introduction to Optical Trapping

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Light that is reflected, refracted or absorbed by small particles in general undergoes a change in momentum. In turn, the particles experience an analogous change in momentum, i.e. a resulting force. It was demonstrated already more than 40 years ago that radiation pressure from a (laser) light source can accelerate microscopic particles. The historically most important insight, however, was that microscopic particles cannot only be pushed by the radiation pressure, but they can be at will confined in all three dimensions, leading to the powerful concept of optical tweezers. This chapter provides a short overview on the basic physical principles and concepts of optical trapping and reviews important milestones. While the focus of this overview will be on classical optical tweezers, related concepts and applications are discussed when beneficial for the understanding of the following chapters.

Keywords

Radiation Pressure Orbital Angular Momentum Light Field Gradient Force Optical Tweezer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allen L, Beijersbergen M, Spreeuw R, Woerdman J (1992) Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes. Phys Rev A 45:8185–8189ADSCrossRefGoogle Scholar
  2. Ando T, Ohtake Y, Matsumoto N, Inoue T, Fukuchi N (2009) Mode purities of Laguerre-Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators. Opt Lett 34:34–36CrossRefGoogle Scholar
  3. Arlt J, Dholakia K, Allen L, Padgett M (1998) The production of multiringed Laguerre-Gaussian modes by computer-generated holograms. J Mod Opt 45:1231–1237ADSCrossRefGoogle Scholar
  4. Asavei T, Nieminen T, Heckenberg N, Rubinsztein-Dunlop H (2009) Fabrication of microstructures for optically driven micromachines using two-photon photopolymerization of UV curing resins. J Opt A: Pure Appl Opt 11:034001ADSCrossRefGoogle Scholar
  5. Asbury C, Fehr A, Block S (2003) Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302:2130–2134ADSCrossRefGoogle Scholar
  6. Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156–159ADSCrossRefGoogle Scholar
  7. Ashkin A (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J 61:569–582CrossRefGoogle Scholar
  8. Ashkin A, Dziedzic J (1971) Optical levitation by radiation pressure. Appl Phys Lett 19:283ADSCrossRefGoogle Scholar
  9. Ashkin A, Dziedzic J, Bjorkholm J, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290ADSCrossRefGoogle Scholar
  10. Barnett S (2002) Optical angular-momentum flux. J Opt B: Quantum Semiclass Opt 4:S7ADSCrossRefGoogle Scholar
  11. Barton J, Alexander D (1989) 5th-Order corrected electromagnetic-field components for a fundamental Gaussian beam. J Appl Phys 66:2800–2802ADSCrossRefGoogle Scholar
  12. Beijersbergen M, Allen L, van der Veen H, Woerdman J (1993) Astigmatic laser mode converters and transfer of orbital angular momentum. Opt Commun 96:123–132ADSCrossRefGoogle Scholar
  13. Beijersbergen M, Coerwinkel R, Kristensen M, Woerdman J (1994) Helical-wave-front laser-beams produced with a spiral phaseplate. Opt Commun 112:321–327ADSCrossRefGoogle Scholar
  14. Berg-Sørensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instrum 75:594–612ADSCrossRefGoogle Scholar
  15. Berry M (1998) Paraxial beams of spinning light. In: Soskin M (ed) International conference on singular optics, vol 3487. SPIE Proceedings pp 6–11Google Scholar
  16. Beth R (1936) Mechanical detection and measurement of the angular momentum of light. Phys Rev 50:115–125ADSCrossRefGoogle Scholar
  17. Chavez-Cerda S, Padgett M, Allison I, New G, Gutierrez-Vega J, O’Neil A, MacVicar I, Courtial J (2002) Holographic generation and orbital angular momentum of high-order Mathieu beams. J Opt B: Quantum Semiclass Opt 4:S52–S57ADSCrossRefGoogle Scholar
  18. Crocker J (1997) Measurement of the hydrodynamic corrections to the brownian motion of two colloidal spheres. J Chem Phys 106:2837–2840ADSCrossRefGoogle Scholar
  19. Curtis J, Koss B, Grier D (2002) Dynamic holographic optical tweezers. Opt Commun 207:169–175ADSCrossRefGoogle Scholar
  20. Davis L (1979) Theory of electromagnetic beams. Phys Rev A 19:1177–1179ADSCrossRefGoogle Scholar
  21. Desyatnikov A, Shvedov V, Rode A, Krolikowski W, Kivshar Y (2009) Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment. Opt Express 17:8201–8211ADSCrossRefGoogle Scholar
  22. Dholakia K, Lee W (2008) Optical trapping takes shape: the use of structured light fields. Adv Atom Mol Opt Phys 56:261–337ADSCrossRefGoogle Scholar
  23. Dholakia K, Zemanek P (2010) Colloquium: gripped by light: optical binding. Rev Mod Phys 82:1767ADSCrossRefGoogle Scholar
  24. Dholakia K, Simpson N, Padgett M, Allen L (1996) Second-harmonic generation and the orbital angular momentum of light. Phys Rev A 54:R3742–R3745ADSCrossRefGoogle Scholar
  25. Dufresne E, Grier D (1998) Optical tweezer arrays and optical substrates created with diffractive optics. Rev Sci Instrum 69:1974–1977ADSCrossRefGoogle Scholar
  26. Dufresne E, Spalding G, Dearing M, Sheets S, Grier D (2001) Computer-generated holographic optical tweezer arrays. Rev Sci Instrum 72:1810–1816ADSCrossRefGoogle Scholar
  27. Eichler J, Dünkel L, Eppich B (2004) Die Strahlqualität von Lasern: Wie bestimmt man Beugungsmaßzahl und Strahldurchmesser in der Praxis?Google Scholar
  28. Fällman E, Axner O (1997) Design for fully steerable dual-trap optical tweezers. Appl Opt 36:2107–2113ADSCrossRefGoogle Scholar
  29. Faucheux L, Bourdieu L, Kaplan P, Libchaber A (1995) Optical thermal ratchet. Phys Rev Lett 74:1504–1507ADSCrossRefGoogle Scholar
  30. Felgner H, Muller O, Schliwa M (1995) Calibration of light forces in optical tweezers. Appl Opt 34:977–982ADSCrossRefGoogle Scholar
  31. Florin E, Pralle A, Stelzer E, Horber J (1998) Photonic force microscope calibration by thermal noise analysis. Appl Phys A 66:S75–S78ADSCrossRefGoogle Scholar
  32. Franke-Arnold S, Allen L, Padgett M (2008) Advances in optical angular momentum. Laser Photon Rev 2:299–313CrossRefGoogle Scholar
  33. Friese M, Nieminen T, Heckenberg N, Rubinsztein-Dunlop H (1998) Optical alignment and spinning of laser-trapped microscopic particles. Nature 394:348–350ADSCrossRefGoogle Scholar
  34. Ghislain L, Webb W (1993) Scanning-force microscope based on an optical trap. Opt Lett 18:1678–1680ADSCrossRefGoogle Scholar
  35. Ghislain L, Switz N, Webb W (1994) Measurement of small forces using an optical trap. Rev Sci Instrum 65:2762–2768ADSCrossRefGoogle Scholar
  36. Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V, Barnett S, Franke-Arnold S (2004) Free-space information transfer using light beams carrying orbital angular momentum. Opt Express, 12:5448–5456Google Scholar
  37. Gibson G, Leach J, Keen S, Wright A, Padgett M (2008) Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy. Opt Express 16:14561–14570ADSCrossRefGoogle Scholar
  38. Glückstad J, Palima D (2009) Generalized Phase Contrast: Applications in Optics and Photonics. Springer, NetherlandsCrossRefGoogle Scholar
  39. Gouesbet G (2009) Generalized Lorenz-Mie theories, the third decade: a perspective. J Quant Spectrosc Ra 110:1223–1238ADSCrossRefGoogle Scholar
  40. Grier D (1997) Optical tweezers in colloid and interface science. Curr Opin Colloid In 2:264–270CrossRefGoogle Scholar
  41. Harada Y, Asakura T (1996) Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt Commun 124:529–541ADSCrossRefGoogle Scholar
  42. He H, Friese M, Heckenberg N, Rubinsztein-Dunlop H (1995) Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys Rev Lett 75:826–829ADSCrossRefGoogle Scholar
  43. Heckenberg N, McDuff R, Smith C, White A (1992) Generation of optical phase singularities by computer-generated holograms. Opt Lett 17:221–223ADSCrossRefGoogle Scholar
  44. Huang R, Chavez I, Taute K, Lukic B, Jeney S, Raizen M, Florin E (2011) Direct observation of the full transition from ballistic to diffusive brownian motion in a liquid. Nat Phys 7:576–580CrossRefGoogle Scholar
  45. Imasaka T, Kawabata Y, Kaneta T, Ishidzu Y (1995) Optical chromatography. Anal Chem 67:1763–1765CrossRefGoogle Scholar
  46. Jahnel M, Behrndt M, Jannasch A, Schäffer E, Grill S (2011) Measuring the complete force field of an optical trap. Opt Lett 36:1260–1262ADSCrossRefGoogle Scholar
  47. Jonas A, Zemanek P (2008) Light at work: the use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 29:4813–4851CrossRefGoogle Scholar
  48. Kerker M, Cooke D (1982) Photophoretic force on aerosol-particles in the free-molecule regime. J Opt Soc Am 72:1267–1272ADSCrossRefGoogle Scholar
  49. Ladavac K, Grier D (2004) Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt Express 12:1144–1149ADSCrossRefGoogle Scholar
  50. Leach J (2006) An optically driven pump for microfluidics. Lab Chip 6:735–739CrossRefGoogle Scholar
  51. Leach J, Padgett M, Barnett S, Franke-Arnold S, Courtial J (2002) Measuring the orbital angular momentum of a single photon. Phys Rev Lett 88:257901ADSCrossRefGoogle Scholar
  52. Lebedev P (1901) Untersuchungen über die Druckkräfte des Lichtes. Ann Phys 6:433CrossRefGoogle Scholar
  53. Liesener J, Reicherter M, Haist T, Tiziani H (2000) Multi-functional optical tweezers using computer-generated holograms. Opt Commun 185:77–82ADSCrossRefGoogle Scholar
  54. MacDonald M, Spalding G, Dholakia K (2003) Microfluidic sorting in an optical lattice. Nature, 426:421–424ADSCrossRefGoogle Scholar
  55. Machavariani G, Davidson N, Hasman E, Blit S, Ishaaya A, Friesem A (2002) Efficient conversion of a Gaussian beam to a high purity helical beam. Opt Commun 209:265–271ADSCrossRefGoogle Scholar
  56. Maier B (2005) Using laser tweezers to measure twitching motility in neisseria. Curr Opin Microbiol 8:344–349CrossRefGoogle Scholar
  57. Malagnino N, Pesce G, Sasso A, Arimondo E (2002) Measurements of trapping efficiency and stiffness in optical tweezers. Opt Commun 214:15–24ADSCrossRefGoogle Scholar
  58. Maxwell J (1873) A treatise on electricity and magnetism. vol 2, Clarendon Press, OxfordGoogle Scholar
  59. Meiners J, Quake S (1999) Direct measurement of hydrodynamic cross correlations between two particles in an external potential. Phys Rev Lett 82:2211–2214ADSCrossRefGoogle Scholar
  60. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 25:377–445MATHCrossRefGoogle Scholar
  61. Mio C, Gong T, Terray A, Marr D (2000) Design of a scanning laser optical trap for multiparticle manipulation. Rev Sci Instrum 71:2196–2200ADSCrossRefGoogle Scholar
  62. Mirsaidov U, Scrimgeour J, Timp W, Beck K, Mir M, Matsudaira P, Timp G (2008) Live cell lithography: using optical tweezers to create synthetic tissue. Lab Chip 8:2174–2181CrossRefGoogle Scholar
  63. Misawa H, Sasaki K, Koshioka M, Kitamura N, Masuhara H (1992) Multibeam laser manipulation and fixation of microparticles. Appl Phys Lett 60:310–312ADSCrossRefGoogle Scholar
  64. Neuman K, Block S (2004) Optical trapping. Rev Sci Instrum 75:2787–2809ADSCrossRefGoogle Scholar
  65. Nichols E, Hull G (1901) A preliminary communication on the pressure of heat and light radiation. Phys Rev (Series I) 13:307–320ADSCrossRefGoogle Scholar
  66. Nichols E, Hull G (1903) The pressure due to radiation (second paper). Phys Rev (Series I) 17:26–50ADSCrossRefGoogle Scholar
  67. Nieminen T, Rubinsztein-Dunlop H, Heckenberg N (2003) Multipole expansion of strongly focussed laser beams. J Quant Spectrosc Ra 79:1005–1017ADSCrossRefGoogle Scholar
  68. Nieminen T, Knoner G, Heckenberg N, Rubinsztein-Dunlop H (2007) Physics of optical tweezers. Laser Manipulation Cells Tissues 82:207–236CrossRefGoogle Scholar
  69. Nieminen T, Loke V, Stilgoe A, Knoner G, Branczyk A, Heckenberg N, Rubinsztein-Dunlop H (2007) Optical tweezers computational toolbox. J Opt A: Pure Appl Opt 9:S196–S203ADSCrossRefGoogle Scholar
  70. Nieminen T, Stilgoe A, Heckenberg N, Rubinsztein-Dunlop H (2008) Angular momentum of a strongly focused gaussian beam. J Opt A: Pure Appl Opt 10:115005ADSCrossRefGoogle Scholar
  71. Nieminen T, Stilgoe A, Heckenberg N, Rubinsztein-Dunlop H (2010) Approximate and exact modeling of optical trapping. SPIE Proc 7762:77622VGoogle Scholar
  72. Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  73. Okulov A (2008) Angular momentum of photons and phase conjugation. J Phys B: At Mol Opt Phys 41:101001ADSCrossRefGoogle Scholar
  74. O’Neil A, Padgett M (2002) Rotational control within optical tweezers by use of a rotating aperture. Opt Lett 27:743–745ADSCrossRefGoogle Scholar
  75. O’Neil AT, MacVicar I, Allen L, Padgett MJ (2002) Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys Rev Lett 88:053601ADSCrossRefGoogle Scholar
  76. Padgett M, Bowman R (2011) Tweezers with a twist. Nat Photonics 5:343–348ADSCrossRefGoogle Scholar
  77. Padgett M, Arlt J, Simpson N, Allen L (1995) An experiment to observe the intensity and phase structure of Laguerre-Gaussian laser modes. Am J Phys 64:77–82ADSCrossRefGoogle Scholar
  78. Padgett M, Molloy J, McGloin D, (eds) (2010) Optical tweezers: methods and applications (Series in Optics and Optoelectronics). Thaylor and Francis GroupGoogle Scholar
  79. Parkin S, Knoner G, Nieminen T, Heckenberg N, Rubinsztein-Dunlop H (2006) Measurement of the total optical angular momentum transfer in optical tweezers. Opt Express 14:6963–6970ADSCrossRefGoogle Scholar
  80. Perch-Nielsen I, Palima D, Dam J, Glückstad J (2009) Parallel particle identification and separation for active optical sorting. J Opt A: Pure Appl Opt 11:034013ADSCrossRefGoogle Scholar
  81. Reicherter M, Haist T, Wagemann E, Tiziani H (1999) Optical particle trapping with computer-generated holograms written on a liquid-crystaldisplay. Opt Lett 24:608–610ADSCrossRefGoogle Scholar
  82. Saleh B, Teich M (2008) Grundlagen der Photonik. Wiley-VCH, BerlinGoogle Scholar
  83. Sasaki K, Koshioka M, Misawa H, Kitamura N, Masuhara H (1991) Pattern-formation and flow-control of fine particles by laser-scanning micromanipulation. Opt Lett 16:1463–1465ADSCrossRefGoogle Scholar
  84. Shvedov V, Desyatnikov A, Rode A, Krolikowski W, Kivshar Y (2009) Optical guiding of absorbing nanoclusters in air. Opt Express 17:5743–5757ADSCrossRefGoogle Scholar
  85. Shvedov V, Rode A, Izdebskaya Y, Desyatnikov A, Krolikowski W, Kivshar Y (2010) Giant optical manipulation. Phys Rev Lett 105:118103ADSCrossRefGoogle Scholar
  86. Shvedov V, Rode A, Izdebskaya Y, Desyatnikov A, Krolikowski W, Kivshar Y (2010) Selective trapping of multiple particles by volume speckle field. Opt Express 18:3137–3142Google Scholar
  87. Simmons R, Finer J, Chu S, Spudich J (1996) Quantitative measurements of force and displacement using an optical trap. Biophys J 70:1813–1822CrossRefGoogle Scholar
  88. Simpson N, Dholakia K, Allen L, Padgett M (1997) Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt Lett 22:52–54ADSCrossRefGoogle Scholar
  89. Stevenson D, Gunn-Moore F, Dholakia K (2010) Light forces the pace: optical manipulation for biophotonics. J Biomed Opt 15:041503CrossRefGoogle Scholar
  90. Stilgoe A, Nieminen T, Knoner G, Heckenberg N, Rubinsztein-Dunlop H (2008) The effect of Mie resonances on trapping in optical tweezers. Opt Express 16:15039–15051ADSCrossRefGoogle Scholar
  91. Svoboda K, Block SM (1994) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285CrossRefGoogle Scholar
  92. Tolić-Nørrelykke S, Schäffer E, Howard J, Pavone F, Jülicher F, Flyvbjerg H (2006) Calibration of optical tweezers with positional detection in the back focal plane. Rev Sci Instrum 77:3101–3113Google Scholar
  93. Viana N, Rocha M, Mesquita O, Mazolli A, Maia Neto P, Nussenzveig H (2007) Towards absolute calibration of optical tweezers. Phys Rev E: Stat Nonlinear Soft Matter Phys 75:021914ADSCrossRefGoogle Scholar
  94. Visscher K, Brakenhoff G, Krol J (1993) Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope. Cytometry 14:105–114CrossRefGoogle Scholar
  95. Volke-Sepulveda K, Garces-Chavez V, Chavez-Cerda S, Arlt J, Dholakia K (2002) Orbital angular momentum of a high-order Bessel light beam. J Opt B: Quantum Semiclass Opt 4:82–89ADSCrossRefGoogle Scholar
  96. Wan J, Huang Y, Jhiang S, Menq C (2009) Real-time in situ calibration of an optically trapped probing system. Appl Opt 48:4832–4841ADSCrossRefGoogle Scholar
  97. Woerdemann M, Alpmann C, Denz C (2012) Optical imaging and metrology, chapter three-dimensional particle control by holographic optical tweezers. Wiley-VCH Verlag, Weinheim, to be publishedGoogle Scholar
  98. Zambrini R, Barnett S (2007) Angular momentum of multimode and polarization patterns. Opt Express 15:15214–15227ADSCrossRefGoogle Scholar
  99. Zhang P, Zhang Z, Prakash J, Huang S, Hernandez D, Salazar M, Christodoulides D, Chen Z (2011) Trapping and transporting aerosols with a single optical bottle beam generated by moiré techniques. Opt Lett 36:1491–1493ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Applied PhysicsUniversity of MünsterMünsterGermany

Personalised recommendations