Skip to main content

Introduction to Optical Trapping

  • Chapter
  • First Online:
Structured Light Fields

Part of the book series: Springer Theses ((Springer Theses))

  • 1578 Accesses

Abstract

Light that is reflected, refracted or absorbed by small particles in general undergoes a change in momentum. In turn, the particles experience an analogous change in momentum, i.e. a resulting force. It was demonstrated already more than 40 years ago that radiation pressure from a (laser) light source can accelerate microscopic particles. The historically most important insight, however, was that microscopic particles cannot only be pushed by the radiation pressure, but they can be at will confined in all three dimensions, leading to the powerful concept of optical tweezers. This chapter provides a short overview on the basic physical principles and concepts of optical trapping and reviews important milestones. While the focus of this overview will be on classical optical tweezers, related concepts and applications are discussed when beneficial for the understanding of the following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The potential energy is derived by integrating Eq. (2.3), assuming that the gradient force is conservative.

  2. 2.

    We recall that solutions of the Helmholtz equation are solutions of the Maxwell equations if we additionally require that the fields are divergence free, i.e. \(\nabla\cdot \vec{E}=0\) and \(\nabla\cdot\vec{H}=0\) (Novotny and Hecht 2006)

  3. 3.

    Note that the s parameter is independent of the wavelength.

  4. 4.

    To keep the presentation concise, some quantities are only loosely defined here. Cf. Chap. 6, Sect. 6.1 for a more rigorous definition.

  5. 5.

    More strictly speaking, LG as well as HG modes are a complete, orthogonal basis of solutions of the paraxial wave equation. Thus, any HG or LG mode can be expanded in a finite series of either modes (Beijersbergen et al. 1993).

References

  • Allen L, Beijersbergen M, Spreeuw R, Woerdman J (1992) Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes. Phys Rev A 45:8185–8189

    Article  ADS  Google Scholar 

  • Ando T, Ohtake Y, Matsumoto N, Inoue T, Fukuchi N (2009) Mode purities of Laguerre-Gaussian beams generated via complex-amplitude modulation using phase-only spatial light modulators. Opt Lett 34:34–36

    Article  Google Scholar 

  • Arlt J, Dholakia K, Allen L, Padgett M (1998) The production of multiringed Laguerre-Gaussian modes by computer-generated holograms. J Mod Opt 45:1231–1237

    Article  ADS  Google Scholar 

  • Asavei T, Nieminen T, Heckenberg N, Rubinsztein-Dunlop H (2009) Fabrication of microstructures for optically driven micromachines using two-photon photopolymerization of UV curing resins. J Opt A: Pure Appl Opt 11:034001

    Article  ADS  Google Scholar 

  • Asbury C, Fehr A, Block S (2003) Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302:2130–2134

    Article  ADS  Google Scholar 

  • Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156–159

    Article  ADS  Google Scholar 

  • Ashkin A (1992) Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys J 61:569–582

    Article  Google Scholar 

  • Ashkin A, Dziedzic J (1971) Optical levitation by radiation pressure. Appl Phys Lett 19:283

    Article  ADS  Google Scholar 

  • Ashkin A, Dziedzic J, Bjorkholm J, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290

    Article  ADS  Google Scholar 

  • Barnett S (2002) Optical angular-momentum flux. J Opt B: Quantum Semiclass Opt 4:S7

    Article  ADS  Google Scholar 

  • Barton J, Alexander D (1989) 5th-Order corrected electromagnetic-field components for a fundamental Gaussian beam. J Appl Phys 66:2800–2802

    Article  ADS  Google Scholar 

  • Beijersbergen M, Allen L, van der Veen H, Woerdman J (1993) Astigmatic laser mode converters and transfer of orbital angular momentum. Opt Commun 96:123–132

    Article  ADS  Google Scholar 

  • Beijersbergen M, Coerwinkel R, Kristensen M, Woerdman J (1994) Helical-wave-front laser-beams produced with a spiral phaseplate. Opt Commun 112:321–327

    Article  ADS  Google Scholar 

  • Berg-Sørensen K, Flyvbjerg H (2004) Power spectrum analysis for optical tweezers. Rev Sci Instrum 75:594–612

    Article  ADS  Google Scholar 

  • Berry M (1998) Paraxial beams of spinning light. In: Soskin M (ed) International conference on singular optics, vol 3487. SPIE Proceedings pp 6–11

    Google Scholar 

  • Beth R (1936) Mechanical detection and measurement of the angular momentum of light. Phys Rev 50:115–125

    Article  ADS  Google Scholar 

  • Chavez-Cerda S, Padgett M, Allison I, New G, Gutierrez-Vega J, O’Neil A, MacVicar I, Courtial J (2002) Holographic generation and orbital angular momentum of high-order Mathieu beams. J Opt B: Quantum Semiclass Opt 4:S52–S57

    Article  ADS  Google Scholar 

  • Crocker J (1997) Measurement of the hydrodynamic corrections to the brownian motion of two colloidal spheres. J Chem Phys 106:2837–2840

    Article  ADS  Google Scholar 

  • Curtis J, Koss B, Grier D (2002) Dynamic holographic optical tweezers. Opt Commun 207:169–175

    Article  ADS  Google Scholar 

  • Davis L (1979) Theory of electromagnetic beams. Phys Rev A 19:1177–1179

    Article  ADS  Google Scholar 

  • Desyatnikov A, Shvedov V, Rode A, Krolikowski W, Kivshar Y (2009) Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment. Opt Express 17:8201–8211

    Article  ADS  Google Scholar 

  • Dholakia K, Lee W (2008) Optical trapping takes shape: the use of structured light fields. Adv Atom Mol Opt Phys 56:261–337

    Article  ADS  Google Scholar 

  • Dholakia K, Zemanek P (2010) Colloquium: gripped by light: optical binding. Rev Mod Phys 82:1767

    Article  ADS  Google Scholar 

  • Dholakia K, Simpson N, Padgett M, Allen L (1996) Second-harmonic generation and the orbital angular momentum of light. Phys Rev A 54:R3742–R3745

    Article  ADS  Google Scholar 

  • Dufresne E, Grier D (1998) Optical tweezer arrays and optical substrates created with diffractive optics. Rev Sci Instrum 69:1974–1977

    Article  ADS  Google Scholar 

  • Dufresne E, Spalding G, Dearing M, Sheets S, Grier D (2001) Computer-generated holographic optical tweezer arrays. Rev Sci Instrum 72:1810–1816

    Article  ADS  Google Scholar 

  • Eichler J, Dünkel L, Eppich B (2004) Die Strahlqualität von Lasern: Wie bestimmt man Beugungsmaßzahl und Strahldurchmesser in der Praxis?

    Google Scholar 

  • Fällman E, Axner O (1997) Design for fully steerable dual-trap optical tweezers. Appl Opt 36:2107–2113

    Article  ADS  Google Scholar 

  • Faucheux L, Bourdieu L, Kaplan P, Libchaber A (1995) Optical thermal ratchet. Phys Rev Lett 74:1504–1507

    Article  ADS  Google Scholar 

  • Felgner H, Muller O, Schliwa M (1995) Calibration of light forces in optical tweezers. Appl Opt 34:977–982

    Article  ADS  Google Scholar 

  • Florin E, Pralle A, Stelzer E, Horber J (1998) Photonic force microscope calibration by thermal noise analysis. Appl Phys A 66:S75–S78

    Article  ADS  Google Scholar 

  • Franke-Arnold S, Allen L, Padgett M (2008) Advances in optical angular momentum. Laser Photon Rev 2:299–313

    Article  Google Scholar 

  • Friese M, Nieminen T, Heckenberg N, Rubinsztein-Dunlop H (1998) Optical alignment and spinning of laser-trapped microscopic particles. Nature 394:348–350

    Article  ADS  Google Scholar 

  • Ghislain L, Webb W (1993) Scanning-force microscope based on an optical trap. Opt Lett 18:1678–1680

    Article  ADS  Google Scholar 

  • Ghislain L, Switz N, Webb W (1994) Measurement of small forces using an optical trap. Rev Sci Instrum 65:2762–2768

    Article  ADS  Google Scholar 

  • Gibson G, Courtial J, Padgett M, Vasnetsov M, Pas’ko V, Barnett S, Franke-Arnold S (2004) Free-space information transfer using light beams carrying orbital angular momentum. Opt Express, 12:5448–5456

    Google Scholar 

  • Gibson G, Leach J, Keen S, Wright A, Padgett M (2008) Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy. Opt Express 16:14561–14570

    Article  ADS  Google Scholar 

  • Glückstad J, Palima D (2009) Generalized Phase Contrast: Applications in Optics and Photonics. Springer, Netherlands

    Book  Google Scholar 

  • Gouesbet G (2009) Generalized Lorenz-Mie theories, the third decade: a perspective. J Quant Spectrosc Ra 110:1223–1238

    Article  ADS  Google Scholar 

  • Grier D (1997) Optical tweezers in colloid and interface science. Curr Opin Colloid In 2:264–270

    Article  Google Scholar 

  • Harada Y, Asakura T (1996) Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt Commun 124:529–541

    Article  ADS  Google Scholar 

  • He H, Friese M, Heckenberg N, Rubinsztein-Dunlop H (1995) Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys Rev Lett 75:826–829

    Article  ADS  Google Scholar 

  • Heckenberg N, McDuff R, Smith C, White A (1992) Generation of optical phase singularities by computer-generated holograms. Opt Lett 17:221–223

    Article  ADS  Google Scholar 

  • Huang R, Chavez I, Taute K, Lukic B, Jeney S, Raizen M, Florin E (2011) Direct observation of the full transition from ballistic to diffusive brownian motion in a liquid. Nat Phys 7:576–580

    Article  Google Scholar 

  • Imasaka T, Kawabata Y, Kaneta T, Ishidzu Y (1995) Optical chromatography. Anal Chem 67:1763–1765

    Article  Google Scholar 

  • Jahnel M, Behrndt M, Jannasch A, Schäffer E, Grill S (2011) Measuring the complete force field of an optical trap. Opt Lett 36:1260–1262

    Article  ADS  Google Scholar 

  • Jonas A, Zemanek P (2008) Light at work: the use of optical forces for particle manipulation, sorting, and analysis. Electrophoresis 29:4813–4851

    Article  Google Scholar 

  • Kerker M, Cooke D (1982) Photophoretic force on aerosol-particles in the free-molecule regime. J Opt Soc Am 72:1267–1272

    Article  ADS  Google Scholar 

  • Ladavac K, Grier D (2004) Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt Express 12:1144–1149

    Article  ADS  Google Scholar 

  • Leach J (2006) An optically driven pump for microfluidics. Lab Chip 6:735–739

    Article  Google Scholar 

  • Leach J, Padgett M, Barnett S, Franke-Arnold S, Courtial J (2002) Measuring the orbital angular momentum of a single photon. Phys Rev Lett 88:257901

    Article  ADS  Google Scholar 

  • Lebedev P (1901) Untersuchungen über die Druckkräfte des Lichtes. Ann Phys 6:433

    Article  Google Scholar 

  • Liesener J, Reicherter M, Haist T, Tiziani H (2000) Multi-functional optical tweezers using computer-generated holograms. Opt Commun 185:77–82

    Article  ADS  Google Scholar 

  • MacDonald M, Spalding G, Dholakia K (2003) Microfluidic sorting in an optical lattice. Nature, 426:421–424

    Article  ADS  Google Scholar 

  • Machavariani G, Davidson N, Hasman E, Blit S, Ishaaya A, Friesem A (2002) Efficient conversion of a Gaussian beam to a high purity helical beam. Opt Commun 209:265–271

    Article  ADS  Google Scholar 

  • Maier B (2005) Using laser tweezers to measure twitching motility in neisseria. Curr Opin Microbiol 8:344–349

    Article  Google Scholar 

  • Malagnino N, Pesce G, Sasso A, Arimondo E (2002) Measurements of trapping efficiency and stiffness in optical tweezers. Opt Commun 214:15–24

    Article  ADS  Google Scholar 

  • Maxwell J (1873) A treatise on electricity and magnetism. vol 2, Clarendon Press, Oxford

    Google Scholar 

  • Meiners J, Quake S (1999) Direct measurement of hydrodynamic cross correlations between two particles in an external potential. Phys Rev Lett 82:2211–2214

    Article  ADS  Google Scholar 

  • Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 25:377–445

    Article  MATH  Google Scholar 

  • Mio C, Gong T, Terray A, Marr D (2000) Design of a scanning laser optical trap for multiparticle manipulation. Rev Sci Instrum 71:2196–2200

    Article  ADS  Google Scholar 

  • Mirsaidov U, Scrimgeour J, Timp W, Beck K, Mir M, Matsudaira P, Timp G (2008) Live cell lithography: using optical tweezers to create synthetic tissue. Lab Chip 8:2174–2181

    Article  Google Scholar 

  • Misawa H, Sasaki K, Koshioka M, Kitamura N, Masuhara H (1992) Multibeam laser manipulation and fixation of microparticles. Appl Phys Lett 60:310–312

    Article  ADS  Google Scholar 

  • Neuman K, Block S (2004) Optical trapping. Rev Sci Instrum 75:2787–2809

    Article  ADS  Google Scholar 

  • Nichols E, Hull G (1901) A preliminary communication on the pressure of heat and light radiation. Phys Rev (Series I) 13:307–320

    Article  ADS  Google Scholar 

  • Nichols E, Hull G (1903) The pressure due to radiation (second paper). Phys Rev (Series I) 17:26–50

    Article  ADS  Google Scholar 

  • Nieminen T, Rubinsztein-Dunlop H, Heckenberg N (2003) Multipole expansion of strongly focussed laser beams. J Quant Spectrosc Ra 79:1005–1017

    Article  ADS  Google Scholar 

  • Nieminen T, Knoner G, Heckenberg N, Rubinsztein-Dunlop H (2007) Physics of optical tweezers. Laser Manipulation Cells Tissues 82:207–236

    Article  Google Scholar 

  • Nieminen T, Loke V, Stilgoe A, Knoner G, Branczyk A, Heckenberg N, Rubinsztein-Dunlop H (2007) Optical tweezers computational toolbox. J Opt A: Pure Appl Opt 9:S196–S203

    Article  ADS  Google Scholar 

  • Nieminen T, Stilgoe A, Heckenberg N, Rubinsztein-Dunlop H (2008) Angular momentum of a strongly focused gaussian beam. J Opt A: Pure Appl Opt 10:115005

    Article  ADS  Google Scholar 

  • Nieminen T, Stilgoe A, Heckenberg N, Rubinsztein-Dunlop H (2010) Approximate and exact modeling of optical trapping. SPIE Proc 7762:77622V

    Google Scholar 

  • Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Okulov A (2008) Angular momentum of photons and phase conjugation. J Phys B: At Mol Opt Phys 41:101001

    Article  ADS  Google Scholar 

  • O’Neil A, Padgett M (2002) Rotational control within optical tweezers by use of a rotating aperture. Opt Lett 27:743–745

    Article  ADS  Google Scholar 

  • O’Neil AT, MacVicar I, Allen L, Padgett MJ (2002) Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys Rev Lett 88:053601

    Article  ADS  Google Scholar 

  • Padgett M, Bowman R (2011) Tweezers with a twist. Nat Photonics 5:343–348

    Article  ADS  Google Scholar 

  • Padgett M, Arlt J, Simpson N, Allen L (1995) An experiment to observe the intensity and phase structure of Laguerre-Gaussian laser modes. Am J Phys 64:77–82

    Article  ADS  Google Scholar 

  • Padgett M, Molloy J, McGloin D, (eds) (2010) Optical tweezers: methods and applications (Series in Optics and Optoelectronics). Thaylor and Francis Group

    Google Scholar 

  • Parkin S, Knoner G, Nieminen T, Heckenberg N, Rubinsztein-Dunlop H (2006) Measurement of the total optical angular momentum transfer in optical tweezers. Opt Express 14:6963–6970

    Article  ADS  Google Scholar 

  • Perch-Nielsen I, Palima D, Dam J, Glückstad J (2009) Parallel particle identification and separation for active optical sorting. J Opt A: Pure Appl Opt 11:034013

    Article  ADS  Google Scholar 

  • Reicherter M, Haist T, Wagemann E, Tiziani H (1999) Optical particle trapping with computer-generated holograms written on a liquid-crystaldisplay. Opt Lett 24:608–610

    Article  ADS  Google Scholar 

  • Saleh B, Teich M (2008) Grundlagen der Photonik. Wiley-VCH, Berlin

    Google Scholar 

  • Sasaki K, Koshioka M, Misawa H, Kitamura N, Masuhara H (1991) Pattern-formation and flow-control of fine particles by laser-scanning micromanipulation. Opt Lett 16:1463–1465

    Article  ADS  Google Scholar 

  • Shvedov V, Desyatnikov A, Rode A, Krolikowski W, Kivshar Y (2009) Optical guiding of absorbing nanoclusters in air. Opt Express 17:5743–5757

    Article  ADS  Google Scholar 

  • Shvedov V, Rode A, Izdebskaya Y, Desyatnikov A, Krolikowski W, Kivshar Y (2010) Giant optical manipulation. Phys Rev Lett 105:118103

    Article  ADS  Google Scholar 

  • Shvedov V, Rode A, Izdebskaya Y, Desyatnikov A, Krolikowski W, Kivshar Y (2010) Selective trapping of multiple particles by volume speckle field. Opt Express 18:3137–3142

    Google Scholar 

  • Simmons R, Finer J, Chu S, Spudich J (1996) Quantitative measurements of force and displacement using an optical trap. Biophys J 70:1813–1822

    Article  Google Scholar 

  • Simpson N, Dholakia K, Allen L, Padgett M (1997) Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner. Opt Lett 22:52–54

    Article  ADS  Google Scholar 

  • Stevenson D, Gunn-Moore F, Dholakia K (2010) Light forces the pace: optical manipulation for biophotonics. J Biomed Opt 15:041503

    Article  Google Scholar 

  • Stilgoe A, Nieminen T, Knoner G, Heckenberg N, Rubinsztein-Dunlop H (2008) The effect of Mie resonances on trapping in optical tweezers. Opt Express 16:15039–15051

    Article  ADS  Google Scholar 

  • Svoboda K, Block SM (1994) Biological applications of optical forces. Annu Rev Biophys Biomol Struct 23:247–285

    Article  Google Scholar 

  • Tolić-Nørrelykke S, Schäffer E, Howard J, Pavone F, Jülicher F, Flyvbjerg H (2006) Calibration of optical tweezers with positional detection in the back focal plane. Rev Sci Instrum 77:3101–3113

    Google Scholar 

  • Viana N, Rocha M, Mesquita O, Mazolli A, Maia Neto P, Nussenzveig H (2007) Towards absolute calibration of optical tweezers. Phys Rev E: Stat Nonlinear Soft Matter Phys 75:021914

    Article  ADS  Google Scholar 

  • Visscher K, Brakenhoff G, Krol J (1993) Micromanipulation by “multiple” optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope. Cytometry 14:105–114

    Article  Google Scholar 

  • Volke-Sepulveda K, Garces-Chavez V, Chavez-Cerda S, Arlt J, Dholakia K (2002) Orbital angular momentum of a high-order Bessel light beam. J Opt B: Quantum Semiclass Opt 4:82–89

    Article  ADS  Google Scholar 

  • Wan J, Huang Y, Jhiang S, Menq C (2009) Real-time in situ calibration of an optically trapped probing system. Appl Opt 48:4832–4841

    Article  ADS  Google Scholar 

  • Woerdemann M, Alpmann C, Denz C (2012) Optical imaging and metrology, chapter three-dimensional particle control by holographic optical tweezers. Wiley-VCH Verlag, Weinheim, to be published

    Google Scholar 

  • Zambrini R, Barnett S (2007) Angular momentum of multimode and polarization patterns. Opt Express 15:15214–15227

    Article  ADS  Google Scholar 

  • Zhang P, Zhang Z, Prakash J, Huang S, Hernandez D, Salazar M, Christodoulides D, Chen Z (2011) Trapping and transporting aerosols with a single optical bottle beam generated by moiré techniques. Opt Lett 36:1491–1493

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike Woerdemann .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Woerdemann, M. (2012). Introduction to Optical Trapping. In: Structured Light Fields. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29323-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29323-8_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29322-1

  • Online ISBN: 978-3-642-29323-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics