Advertisement

Motivation and Outline

  • Mike WoerdemannEmail author
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Optical tweezers, laser tweezers, optical (micro) manipulation, or optical trapping are but the most common words for a class of methods that has developed to a huge range of applications in, and novel insights into, such divergent fields as e. g. theoretical thermodynamics on the one hand, and biomedicine on the other. The basic idea is simple end elegant: Light with high intensity transfers some of its momentum to a small particle and by this means exerts a force on the particle. This provides an in most aspects unique way to handle nano- and microscopic objects, ranging from simple plastic spheres to highly complex biological cells, without any kind of physical contact and on length scales that cannot easily be accessed by any other technique.

References

  1. Alpmann C, Bowman R, Woerdemann M, Padgett M, Denz C (2010) Mathieu beams as versatile light moulds for 3D micro particle assemblies. Opt Express 18:26084–26091ADSCrossRefGoogle Scholar
  2. Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156–159ADSCrossRefGoogle Scholar
  3. Ashkin A, Dziedzic J, Bjorkholm J, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11:288–290ADSCrossRefGoogle Scholar
  4. Chu S, Bjorkholm J, Ashkin A, Cable A (1986) Experimental observation of optically trapped atoms. Phys Rev Lett 57:314–317ADSCrossRefGoogle Scholar
  5. Curtis J, Koss B, Grier D (2002) Dynamic holographic optical tweezers. Opt Commun 207:169–175ADSCrossRefGoogle Scholar
  6. Dufresne E, Spalding G, Dearing M, Sheets S, Grier D (2001) Computer-generated holographic optical tweezer arrays. Rev Sci Instrum 72:1810–1816ADSCrossRefGoogle Scholar
  7. Hörner F, Woerdemann M, Müller S, Maier B, Denz C (2010) Full 3D translational and rotational optical control of multiple rod-shaped bacteria. J Biophotonics 3:468–475CrossRefGoogle Scholar
  8. Sasaki K, Koshioka M, Misawa H, Kitamura N, Masuhara H (1991) Pattern-formation and flow-control of fine particles by laser-scanning micromanipulation. Opt Lett 16:1463–1465ADSCrossRefGoogle Scholar
  9. Woerdemann M, Holtmann F, Denz C (2009) Holographic phase contrast for dynamic multiple-beam optical tweezers. J Opt A: Pure Appl Opt 11:034010ADSCrossRefGoogle Scholar
  10. Woerdemann M, Alpmann C, Hoerner F, Devaux A, De Cola L, Denz C (2010a) Optical control and dynamic patterning of zeolites. SPIE Proc 7762:77622EADSCrossRefGoogle Scholar
  11. Woerdemann M, Berghoff K, Denz C (2010b) Dynamic multiple-beam counter-propagating optical traps using optical phase-conjugation. Opt Express 18:22348–22357ADSCrossRefGoogle Scholar
  12. Woerdemann M, Gläsener S, Hörner F, Devaux A, De Cola L, Denz C (2010c) Dynamic and reversible organization of zeolite L crystals induced by holographic optical tweezers. Adv Mater 22:4176–4179CrossRefGoogle Scholar
  13. Woerdemann M, Alpmann C, Denz C (2011) Optical assembly of microparticles into highly ordered structures using Ince-Gaussian beams. Appl Phys Lett 98:111101ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institute of Applied PhysicsUniversity of MünsterMünsterGermany

Personalised recommendations