Advertisement

Composing Real-Time Concurrent Objects Refinement, Compatibility and Schedulability

  • Mohammad Mahdi Jaghoori
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7141)

Abstract

Concurrent objects encapsulate a processor each and communicate by asynchronous message passing; therefore, they can be composed to naturally model distributed and embedded systems. We model real-time concurrent objects using timed automata and provide each object with a context-specific scheduling policy. The envisioned usage and guaranteed deadlines of each object is specified in its behavioral interface, given also in timed automata. Furthermore, multiple objects can be composed only if they are compatible, i.e., if they respect the expected use patterns given in the behavioral interfaces of each other. In this paper, we define refinement of timed automata with inputs and outputs from a new perspective and we take account of deadlines in the refinement theory. Within this framework, we study composition and compatibility of real-time concurrent objects, and apply it in the context of compositional schedulability analysis of multiple-processor systems.

Keywords

Output Action Internal Action Reachability Analysis Automaton Theory Schedulability Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aceto, L., Bouyer, P., Burgueño, A., Larsen, K.G.: The power of reachability testing for timed automata. Theor. Comput. Sci. 300(1-3), 411–475 (2003)zbMATHCrossRefGoogle Scholar
  2. 2.
    de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed Interfaces. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 108–122. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Alur, R., Henzinger, T.A., Kupferman, O., Vardi, M.Y.: Alternating Refinement Relations. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 163–178. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    de Boer, F.S., Jaghoori, M.M., Johnsen, E.B.: Dating Concurrent Objects: Real-Time Modeling and Schedulability Analysis. In: Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 1–18. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Closse, E., Poize, M., Pulou, J., Sifakis, J., Venter, P., Weil, D., Yovine, S.: TAXYS: A Tool for the Development and Verification of Real-Time Embedded Systems. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 391–395. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. 7.
    Courcoubetis, C., Yannakakis, M.: Minimum and maximum delay problems in real-time systems. Formal Methods in System Design 1(4), 385–415 (1992)zbMATHCrossRefGoogle Scholar
  8. 8.
    David, A., Larsen, K.G., Legay, A., Nyman, U., Wasowski, A.: Timed I/O automata: a complete specification theory for real-time systems. In: Proc. Hybrid Systems: Computation and Control (HSCC 2010), pp. 91–100. ACM (2010)Google Scholar
  9. 9.
    Fersman, E., Krcal, P., Pettersson, P., Yi, W.: Task automata: Schedulability, decidability and undecidability. Information and Computation 205(8), 1149–1172 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Garcia, J.J.G., Gutierrez, J.C.P., Harbour, M.G.: Schedulability analysis of distributed hard real-time systems with multiple-event synchronization. In: Proc. 12th Euromicro Conference on Real-Time Systems, pp. 15–24. IEEE (2000)Google Scholar
  11. 11.
    Jaghoori, M.M., de Boer, F.S., Chothia, T., Sirjani, M.: Schedulability of asynchronous real-time concurrent objects. J. Logic and Alg. Prog. 78(5), 402–416 (2009)zbMATHCrossRefGoogle Scholar
  12. 12.
    Jaghoori, M.M., Chothia, T.: Timed automata semantics for analyzing Creol. In: Proc. Foundations of Coordination Languages and Software Architectures (FOCLASA 2010). EPTCS, vol. 30, pp. 108–122 (2010)Google Scholar
  13. 13.
    Jaghoori, M.M., Longuet, D., de Boer, F.S., Chothia, T.: Schedulability and compatibility of real time asynchronous objects. In: Proc. RTSS 2008, pp. 70–79. IEEE CS (2008)Google Scholar
  14. 14.
    Krcal, P., Stigge, M., Yi, W.: Multi-Processor Schedulability Analysis of Preemptive Real-Time Tasks with Variable Execution Times. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 274–289. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Kupferman, O., Vardi, M.Y., Wolper, P.: Module checking. Information and Computation 164(2), 322–344 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. STTT 1(1-2), 134–152 (1997)zbMATHGoogle Scholar
  17. 17.
    Meyer, B.: Eiffel: The language. Prentice-Hall (1992)Google Scholar
  18. 18.
    Nigro, L., Pupo, F.: Schedulability Analysis of Real Time Actor Systems using Coloured Petri Nets. In: Agha, G., De Cindio, F., Rozenberg, G. (eds.) APN 2001. LNCS, vol. 2001, pp. 493–513. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mohammad Mahdi Jaghoori
    • 1
    • 2
  1. 1.LIACSLeidenThe Netherlands
  2. 2.CWIAmsterdamThe Netherlands

Personalised recommendations