Decompositional Reasoning about the History of Parallel Processes

  • Luca Aceto
  • Arnar Birgisson
  • Anna Ingólfsdóttir
  • MohammadReza Mousavi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7141)


This paper presents a decomposition technique for Hennessy-Milner logic with past and its extension with recursively defined formulae. In order to highlight the main ideas and technical tools, processes are described using a subset of CCS with parallel composition, nondeterministic choice, action prefixing and the inaction constant. The study focuses on developing decompositional reasoning techniques for parallel contexts in that language.


Model Check Parallel Process Operational Semantic Proof System Label Transition System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aceto, L., Birgisson, A., Ingolfsdottir, A., Mousavi, M.R.: Decompositional reasoning about the history of parallel processes. Technical Report CSR-10-17, TU/Eindhoven (2010)Google Scholar
  2. 2.
    Aceto, L., Bouyer, P., Burgueño, A., Larsen, K.G.: The power of reachability testing for timed automata. TCS 300(1–3), 411–475 (2003)zbMATHCrossRefGoogle Scholar
  3. 3.
    Aceto, L., Ingólfsdóttir, A.: Testing Hennessy-Milner Logic with Recursion. In: Thomas, W. (ed.) FOSSACS 1999. LNCS, vol. 1578, pp. 41–55. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  4. 4.
    Aceto, L., Ingolfsdottir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling, Specification and Verification, Cambridge (2007)Google Scholar
  5. 5.
    Andersen, H.R.: Partial model checking (extended abstract). In: LICS 1995, pp. 398–407. IEEE CS (1995)Google Scholar
  6. 6.
    Andersen, H.R., Stirling, C., Winskel, G.: A compositional proof system for the modal mu-calculus. In: LICS 1994, pp. 144–153. IEEE CS (1994)Google Scholar
  7. 7.
    Arnold, A., Vincent, A., Walukiewicz, I.: Games for synthesis of controllers with partial observation. TCS 303(1), 7–34 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Baeten, J.C.M., Basten, T., Reniers, M.A.: Process Algebra: Equational Theories of Communicating Processes, Cambridge (2009)Google Scholar
  9. 9.
    Basu, S., Kumar, R.: Quotient-based control synthesis for non-deterministic plants with mu-calculus specifications. In: IEEE Conference on Decision and Control 2006, pp. 5463–5468. IEEE (2006)Google Scholar
  10. 10.
    Bloom, B., Fokkink, W., van Glabbeek, R.J.: Precongruence formats for decorated trace semantics. ACM Trans. Comput. Log. 5(1), 26–78 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Boudol, G., Castellani, I.: A non-interleaving semantics for CCS based on proved transitions. Fundamenta Informaticae 11(4), 433–452 (1988)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Cassez, F., Laroussinie, F.: Model-Checking for Hybrid Systems by Quotienting and Constraints Solving. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 373–388. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Danos, V., Krivine, J.: Reversible Communicating Systems. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 292–307. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Dechesne, F., Mousavi, M., Orzan, S.: Operational and Epistemic Approaches to Protocol Analysis: Bridging the Gap. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS (LNAI), vol. 4790, pp. 226–241. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Degano, P., Priami, C.: Proved Trees. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 629–640. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  16. 16.
    De Nicola, R., Montanari, U., Vaandrager, F.W.: Back and Forth Bisimulations. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 152–165. Springer, Heidelberg (1990)Google Scholar
  17. 17.
    De Nicola, R., Vaandrager, F.W.: Three logics for branching bisimulation. JACM 42(2), 458–487 (1995)zbMATHCrossRefGoogle Scholar
  18. 18.
    Fokkink, W., van Glabbeek, R.J., de Wind, P.: Compositionality of Hennessy-Milner logic by structural operational semantics. TCS 354(3), 421–440 (2006)zbMATHCrossRefGoogle Scholar
  19. 19.
    Giannakopoulou, D., Pasareanu, C.S., Barringer, H.: Component verification with automatically generated assumptions. Automated Software Engineering 12(3), 297–320 (2005)CrossRefGoogle Scholar
  20. 20.
    Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent systems. Journal of Computer Security 13(3), 483–512 (2005)Google Scholar
  21. 21.
    Hennessy, M., Stirling, C.: The power of the future perfect in program logics. I & C 67(1-3), 23–52 (1985)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Henzinger, T.A., Kupferman, O., Qadeer, S.: From pre-historic to post-modern symbolic model checking. Formal Methods in System Design 23(3), 303–327 (2003)zbMATHCrossRefGoogle Scholar
  23. 23.
    Ingólfsdóttir, A., Godskesen, J.C., Zeeberg, M.: Fra Hennessy-Milner logik til CCS-processer. Technical report, Aalborg Universitetscenter (1987)Google Scholar
  24. 24.
    Kozen, D.: Results on the propositional mu-calculus. TCS 27, 333–354 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Laroussinie, F., Larsen, K.G.: Compositional Model Checking of Real Time Systems. In: Lee, I., Smolka, S.A. (eds.) CONCUR 1995. LNCS, vol. 962, pp. 27–41. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  26. 26.
    Laroussinie, F., Larsen, K.G.: CMC: A tool for compositional model-checking of real-time systems. In: FORTE 1998. IFIP Conference Proceedings, vol. 135, pp. 439–456. Kluwer (1998)Google Scholar
  27. 27.
    Laroussinie, F., Pinchinat, S., Schnoebelen, P.: Translations between modal logics of reactive systems. TCS 140(1), 53–71 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Laroussinie, F., Schnoebelen, P.: Specification in CTL+past for verification in CTL. I & C 156(1), 236–263 (2000)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Larsen, K.G.: Context-dependent bisimulation between processes. PhD thesis, University of Edinburgh (1986)Google Scholar
  30. 30.
    Larsen, K.G.: Proof systems for satisfiability in Hennessy–Milner logic with recursion. TCS 72(2–3), 265–288 (1990)zbMATHCrossRefGoogle Scholar
  31. 31.
    Larsen, K.G., Xinxin, L.: Compositionality through an operational semantics of contexts. Journal of Logic and Computation 1(6), 761–795 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Lichtenstein, O., Pnueli, A., Zuck, L.D.: The Glory of the Past. In: Parikh, R. (ed.) Logic of Programs 1985. LNCS, vol. 193, pp. 196–218. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  33. 33.
    Nielsen, M.: Reasoning about the Past. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 117–128. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  34. 34.
    Phillips, I.C.C., Ulidowski, I.: Reversing algebraic process calculi. JLAP 73(1–2), 70–96 (2007)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Raclet, J.-B.: Residual for component specifications. Electr. Notes Theor. Comput. Sci. 215, 93–110 (2008)CrossRefGoogle Scholar
  36. 36.
    Simpson, A.K.: Sequent calculi for process verification: Hennessy-Milner logic for an arbitrary GSOS. JLAP 60-61, 287–322 (2004)Google Scholar
  37. 37.
    Stirling, C.: A Complete Compositional Modal Proof System for a Subset of CCS. In: Brauer, W. (ed.) ICALP 1985. LNCS, vol. 194, pp. 475–486. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  38. 38.
    Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of Mathematics 5, 285–309 (1955)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Vardi, M.Y.: Reasoning about the Past with Two-Way Automata. In: Larsen, K.G., Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628–641. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  40. 40.
    Winskel, G.: Synchronization trees. TCS 34, 33–82 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Winskel, G.: A complete proof system for SCCS with modal assertions. Fundamenta Informaticae IX, 401–420 (1986)MathSciNetGoogle Scholar
  42. 42.
    Xie, G., Dang, Z.: Testing Systems of Concurrent Black-Boxes—an Automata-Theoretic and Decompositional Approach. In: Grieskamp, W., Weise, C. (eds.) FATES 2005. LNCS, vol. 3997, pp. 170–186. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luca Aceto
    • 1
  • Arnar Birgisson
    • 2
  • Anna Ingólfsdóttir
    • 1
  • MohammadReza Mousavi
    • 3
  1. 1.School of Computer ScienceReykjavik UniversityIceland
  2. 2.Department of Computer Science and EngineeringChalmers University of TechnologySweden
  3. 3.Department of Computer ScienceTU/EindhovenEindhovenThe Netherlands

Personalised recommendations