Advertisement

A Specification Language for Reo Connectors

  • Alexandra Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7141)

Abstract

Recent approaches to component-based software engineering employ coordinating connectors to compose components into software systems. Reo is a model of component coordination, wherein complex connectors are constructed by composing various types of primitive channels. Reo automata are a simple and intuitive formal model of context- dependent connectors, which provided a compositional semantics for Reo.

In this paper, we study Reo automata from a coalgebraic perspective. This enables us to apply the recently developed coalgebraic theory of generalized regular expressions in order to derive a specification language, tailor-made for Reo automata, and sound and complete axiomatizations with respect to three distinct notions of equivalence: (coalgebraic) bisimilarity, the bisimulation notion studied in the original papers on Reo automata and trace equivalence. The obtained language is simple, but nonetheless expressive enough to specify all possible finite Reo automata. Moreover, it comes equipped with a Kleene-like theorem: we provide algorithms to translate expressions to Reo automata and, conversely, to compute an expression equivalent to a state in a Reo automaton.

Keywords

Regular Expression Operational Semantic Compositional Semantic Coalgebra Structure Distinct Notion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbab, F.: Reo: a channel-based coordination model for component composition. Mathematical Structures in Computer Science 14(3), 329–366 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Arbab, F., Herman, I., Spilling, P.: An overview of Manifold and its implementation. Concurrency - Practice and Experience 5(1), 23–70 (1993)CrossRefGoogle Scholar
  3. 3.
    Barbosa, M.A., Barbosa, L.S., Campos, J.C.: Towards a coordination model for interactive systems. Electronic Notes in Theoretical Computer Science 183, 89–103 (2007)CrossRefGoogle Scholar
  4. 4.
    Bliudze, S., Sifakis, J.: The algebra of connectors - structuring interaction in BIP. IEEE Trans. Computers 57(10), 1315–1330 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bonsangue, M., Caltais, G., Goriac, E.-I., Lucanu, D., Rutten, J., Silva, A.: A Decision Procedure for Bisimilarity of Generalized Regular Expressions. In: Davies, J., Silva, L., Simão, A. (eds.) SBMF 2010. LNCS, vol. 6527, pp. 226–241. Springer, Heidelberg (2011)Google Scholar
  6. 6.
    Bonsangue, M.M., Clarke, D., Silva, A.: Automata for Context-Dependent Connectors. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 184–203. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Bonsangue, M.M., Clarke, D., Silva, A.: A model of context-dependent component connectors. Science of Computer Programming (2010)Google Scholar
  8. 8.
    Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor. Comput. Sci. 366(1-2), 98–120 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Fiadeiro, J.L., Lopes, A.: Community on the Move: Architectures for Distribution and Mobility. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2003. LNCS, vol. 3188, pp. 177–196. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    Scholten, J.V.G.: Mobile channels for exogenous coordination of distributed systems: semantics, implementation and composition. PhD thesis, LIACS, Faculty of Mathematics and Natural Sciences, Leiden University (January 2007)Google Scholar
  11. 11.
    Lee, B., Lee, E.A.: Hierarchical concurrent finite state machines in Ptolemy. In: ACSD, pp. 34–40. IEEE Computer Society (1998)Google Scholar
  12. 12.
    Liu, X., Xiong, Y., Lee, E.A.: The Ptolemy II framework for visual languages. In: HCC, pp. 50–51. IEEE Computer Society (2001)Google Scholar
  13. 13.
    Lucanu, D., Roşu, G.: CIRC: A Circular Coinductive Prover. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS, vol. 4624, pp. 372–378. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Rabinovich, A.M.: A Complete Axiomatisation for Trace Congruence of Finite State Behaviors. In: Brookes, S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.) MFPS 1993. LNCS, vol. 802, pp. 530–543. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  15. 15.
    Silva, A.: A specification language for Reo connectors. Technical report, Centrum Wiskunde & Informatica (February 2011)Google Scholar
  16. 16.
    Silva, A., Bonsangue, M.M., Rutten, J.J.M.M.: Non-deterministic Kleene coalgebras. Logical Methods in Computer Science 6(3) (2010)Google Scholar
  17. 17.
    Szyperski, C.: Component Software: Beyond Object-Oriented Programming, 2nd edn. Addison-Wesley Professional (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexandra Silva
    • 1
  1. 1.Centrum Wiskunde & InformaticaNetherlands

Personalised recommendations