Advertisement

Relating Modal Refinements, Covariant-Contravariant Simulations and Partial Bisimulations

  • Luca Aceto
  • Ignacio Fábregas
  • David de Frutos Escrig
  • Anna Ingólfsdóttir
  • Miguel Palomino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7141)

Abstract

This paper studies the relationships between three notions of behavioural preorder that have been proposed in the literature: refinement over modal transition systems, and the covariant-contravariant simulation and the partial bisimulation preorders over labelled transition systems. It is shown that there are mutual translations between modal transition systems and labelled transition systems that preserve, and reflect, refinement and the covariant-contravariant simulation preorder. The translations are also shown to preserve the modal properties that can be expressed in the logics that characterize those preorders. A translation from labelled transition systems modulo the partial bisimulation preorder into the same model modulo the covariant-contravariant simulation preorder is also offered, together with some evidence that the former model is less expressive than the latter. In order to gain more insight into the relationships between modal transition systems modulo refinement and labelled transition systems modulo the covariant-contravariant simulation preorder, their connections are also phrased and studied in the context of institutions.

Keywords

Modal Logic Transition System Supervisory Control Label Transition System Modal Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antonik, A., Huth, M., Larsen, K.G., Nyman, U., Wąsowski, A.: 20 years of modal and mixed specifications. Bull. Eur. Assoc. Theor. Comput. Sci. EATCS 95, 94–129 (2008)zbMATHGoogle Scholar
  2. 2.
    Baeten, J., van Beek, D., Luttik, B., Markovski, J., Rooda, J.: Partial bisimulation. SE Report 2010-04, Systems Engineering Group, Department of Mechanical Engineering, Eindhoven University of Technology (2010)Google Scholar
  3. 3.
    Boudol, G., Larsen, K.G.: Graphical versus logical specifications. Theoretical Comput. Sci. 106(1), 3–20 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Darondeau, P., Dubreil, J., Marchand, H.: Supervisory control for modal specifications of services. In: Proceedings of WODES 2010, Berlin, Germany, August 30–September 1 (2010) (to appear)Google Scholar
  5. 5.
    Fábregas, I., de Frutos Escrig, D., Palomino, M.: Non-Strongly Stable Orders also Define Interesting Simulation Relations. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 221–235. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Fábregas, I., de Frutos Escrig, D., Palomino, M.: Logics for Contravariant Simulations. In: Hatcliff, J., Zucca, E. (eds.) FMOODS/ FORTE 2010. LNCS, vol. 6117, pp. 224–231. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Fecher, H., de Frutos-Escrig, D., Lüttgen, G., Schmidt, H.: On the Expressiveness of Refinement Settings. In: Arbab, F., Sirjani, M. (eds.) FSEN 2009. LNCS, vol. 5961, pp. 276–291. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Feuillade, G., Pinchinat, S.: Modal specifications for the control theory of discrete event systems. Discrete Event Dynamical Systems 17, 211–232 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Goguen, J.A., Burstall, R.M.: Institutions: Abstract model theory for specification and programming. J. ACM 39(1), 95–146 (1992)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Graf, S., Sifakis, J.: A modal characterization of observational congruence on finite terms of CCS. Information and Control 68(1–3), 125–145 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Larsen, K.G.: Modal Specifications. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 232–246. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  12. 12.
    Larsen, K.G., Thomsen, B.: A modal process logic. In: Proceedings of 3rd Annual Symposium on Logic in Computer Science, Edinburgh, pp. 203–210. IEEE Computer Society Press (1988)Google Scholar
  13. 13.
    Milner, R.: Communication and Concurrency. Prentice-Hall International, Englewood Cliffs (1989)zbMATHGoogle Scholar
  14. 14.
    Park, D.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  15. 15.
    Ramadge, P., Wonham, W.: Supervisory control of a class of discrete event processes. SIAM Journal of Control and Optimization 25, 206–230 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Steffen, B., Ingólfsdóttir, A.: Characteristic formulae for processes with divergence. Information and Computation 110(1), 149–163 (1994)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Luca Aceto
    • 1
  • Ignacio Fábregas
    • 2
  • David de Frutos Escrig
    • 2
  • Anna Ingólfsdóttir
    • 1
  • Miguel Palomino
    • 2
  1. 1.ICE-TCS, School of Computer ScienceReykjavik UniversityIceland
  2. 2.Departamento de Sistemas Informáticos y ComputaciónUniversidad Complutense de MadridSpain

Personalised recommendations