Skip to main content

Particle Image Velocimetry (PIV) Flow Measurements of Carotid Artery Bifurcation with Application to a Novel Covered Carotid Stent Design

  • Conference paper
World Congress on Medical Physics and Biomedical Engineering May 26-31, 2012, Beijing, China

Part of the book series: IFMBE Proceedings ((IFMBE,volume 39))

  • 221 Accesses

Abstract

Stenosed carotid artery is responsible for 60% of strokes in the United States and is the third major cause of death. Recently, there is an increasing interest in carotid artery stenting for treatment of cervical carotid artery bifurcation atherosclerotic disease. The ultimate goal of this study is to develop, prototype, test, and optimize a novel design of a covered carotid stent, in order to achieve emboli prevention and at the same time maintain the external carotid artery (ECA) branch flow. For this purpose, in the first stage, true-to-scale silicon replicas of anatomically realistic geometries of carotid arteries are fabricated and the flow field in the carotid bifurcation region is measured, utilizing particle image velocimetry (PIV) technique. These data are also used to validate the concurrent computational simulation results and fluid-structure interaction (FSI) analyses of the designed covered stents in the carotid artery models. Then, in the next stage, the stent prototypes will be deployed in the silicon models, and PIV flow measurements will be conducted to investigate the influence of each stent design on the flow behavior and the flow division between the internal and external carotid artery branches. Moreover, the capability of each covered stent design model in confining the atherosclerotic plaque fragments (emboli) will be evaluated experimentally. The preliminary stage of this study has demonstrated that the PIV and FSI computational simulations can complement each other to investigate the carotid flow towards our goal of determining the superior covered stent design that can bring about better emboli prevention and maintain the ECA branch vessel flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Kabinejadian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kabinejadian, F., Leo, H.L., Danpinid, A., Cui, F., Zhang, Z., Ho, P. (2013). Particle Image Velocimetry (PIV) Flow Measurements of Carotid Artery Bifurcation with Application to a Novel Covered Carotid Stent Design. In: Long, M. (eds) World Congress on Medical Physics and Biomedical Engineering May 26-31, 2012, Beijing, China. IFMBE Proceedings, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29305-4_379

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29305-4_379

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29304-7

  • Online ISBN: 978-3-642-29305-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics