Advertisement

Efficient Variable Size Template Matching Using Fast Normalized Cross Correlation on Multicore Processors

  • Durgaprasad Gangodkar
  • Sachin Gupta
  • Gurbinder Singh Gill
  • Padam Kumar
  • Ankush Mittal
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7135)

Abstract

Normalized Cross Correlation (NCC) is an efficient and robust way for finding the location of a template in given image. However NCC is computationally expensive. Fast normalized cross correlation (FNCC) makes use of pre-computed sum-tables to improve the computational efficiency of NCC. In this paper we propose a strategy for parallel implementation of FNCC algorithm using NVIDIA’s Compute Unified Device Architecture (CUDA) for real-time template matching. We also present an approach to make proposed method adaptable to variable size templates which is an important challenge to tackle. Efficient parallelization strategies, adopted for pre-computing sum-tables and extracting data parallelism by dividing the image into series of blocks, substantially reduce required computational time. We show that by optimal utilization of different memories available on multicore architecture and exploiting the asynchronous nature of CUDA kernel calls we can obtain speedup of the order 17X as compared to the sequential implementation.

Keywords

Template Matching Fast Normalized Cross Correlation CUDA GP-GPU 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ryan, T.W.: The Prediction of Cross-Correlation Accuracy in Digital Stereo-Pair Images. PhD thesis, University of Arizona (1981)Google Scholar
  2. 2.
    Burt, P.J., Yen, C., Xu, X.: Local Correlation Measures for Motion Analysis: A Comparative Study. In: IEEE Conf. Pattern Recognition and Image Processing, pp. 269–274. IEEE Press (1982)Google Scholar
  3. 3.
    Essannouni, L., Ibn-Elhaj, E., Aboutajdine, D.: Fast Cross-Spectral Image Registration Using New Robust Correlation. Journal of Real-Time Image Processing 1(2), 123–129 (2006)CrossRefGoogle Scholar
  4. 4.
    Minoru, M., Kunio, K.: Fast Template Matching Based on Normalized Cross Correlation Using Adaptive Block Partitioning and Initial Threshold Estimation. In: IEEE International Symposium on Multimedia, pp. 196–203. IEEE Press (2010)Google Scholar
  5. 5.
    Luo, J., Konofagou, E.E.: A Fast Normalized Cross-Correlation Calculation Method for Motion Estimation. IEEE Trans. on Ultrasonics, Ferroelectrics and Frequency Control 57(6), 1347–1357 (2010)CrossRefGoogle Scholar
  6. 6.
    Zhu, S., Ma, K.K.: A New Diamond Search Algorithm for Fast Block Matching Motion Estimation. IEEE Trans. Image Processing 9(2), 287–290 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Liu, L.K., Feig, E.: A Block-Based Gradient Descent Search Algorithm for Block Motion Estimation in Video Coding. IEEE Trans. Circuits Syst. Video Technol. 6(4), 419–423 (1996)CrossRefGoogle Scholar
  8. 8.
    Tham, J.Y., Ranganath, S., Ranganath, M., Kassim, A.A.: A Novel Unrestricted Center-Biased Diamond Search Algorithm for Block Motion Estimation. IEEE Trans. Circuits Syst. Video Technol. 8(4), 369–377 (1998)CrossRefGoogle Scholar
  9. 9.
    Zhu, C., Lin, X., Chau, L.: Hexagon-Based Search Pattern for Fast Block Motion Estimation. IEEE Trans. Circuits Syst. Video Technol. 12(5), 349–355 (2002)CrossRefGoogle Scholar
  10. 10.
    Lewis, J.P.: Fast Template Matching. In: Vision Interface 1995. Canadian Image Processing and Pattern Recognition Society, pp. 120–123 (1995)Google Scholar
  11. 11.
    Lewis, J.P.: Fast Normalized Cross-Correlation. Industrial Lights and MagicGoogle Scholar
  12. 12.
    Briechl, K., Hanebeck, U.D.: Template Matching Using Fast Normalized Cross Correlation. In: SPIE, vol. 4387(95) (2001)Google Scholar
  13. 13.
  14. 14.
    NVIDIA CUDA Programming Guide, Version 2.2, pp. 10, 27–35, 75–97 (2009) Google Scholar
  15. 15.
    Hii, A.J.H., Hann, C.E., Chase, J.G., Van Houten, E.E.W.: Fast Normalized Cross Correlation for Motion Tracking Using Basis Functions. Journal of Computer Methods and Programs in Biomedicine 82(2), 144–156 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Durgaprasad Gangodkar
    • 1
  • Sachin Gupta
    • 1
  • Gurbinder Singh Gill
    • 1
  • Padam Kumar
    • 1
  • Ankush Mittal
    • 2
  1. 1.Dept. of Electronics and Computer Engg.Indian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Dept. of Computer Science and Engg.Graphic Era UniversityDehradunIndia

Personalised recommendations