Detection of Straight Lines Using Rule Directed Pixel Comparison (RDPC) Method

  • Anand T.V.
  • Madhu S. Nair
  • Rao Tatavarti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7135)


A simple and efficient algorithm, based on Rule Directed Pixel Comparison, RDPC method, is proposed for detecting straight line segments in an edge image, based on certain specific rules, scanning column wise and labelling done in accordance with the application of rules. Four rules are formulated to detect the edge pixels which are part of straight lines with each straight line having two threshold values, minimum line length and minimum line level length. A comparison of the resultant image is made with Standard Hough Transform and other advanced algorithms.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mansouri, A., Malowany, S., Levine, M.D.: Line detection in digital pictures: A hypothesis prediction/verification paradigm. Compu. Vision Graphics Image Process. 40, 95–114 (1987)CrossRefGoogle Scholar
  2. 2.
    Guru, D.S., Shekar, B.H., Nagabhushan, P.: A simple and robust line detection algorithm based on small eigenvalue analysis. Pattern Recognition Lett. 25, 1–13 (2004)CrossRefGoogle Scholar
  3. 3.
    Burns, J.B., Hanson, A.R., Riseman, E.M.: Extracting straight lines. IEEE Trans. Pattern Anal. Machine Intell. 8(4), 425–455 (1986)CrossRefGoogle Scholar
  4. 4.
    Nevatia, R., Babu, K.R.: Linear feature extraction and description. Comput. Vision Graphics Image Process. 13, 257–269 (1980)CrossRefGoogle Scholar
  5. 5.
    Nelson, R.C.: Finding line segments by stick growing. IEEE Trans. Pattern Anal. Machine Intell. 16(5), 519–523 (1994)CrossRefGoogle Scholar
  6. 6.
    Duda, R.O., Hart, P.E.: Use of Hough transformation to detect lines and curves in pictures. Commun. ACM 15(1), 11–15 (1972)CrossRefGoogle Scholar
  7. 7.
    Li, H., Lavin, M.A., Le Master, R.J.: Fast Hough transform: A hierarchical approach. Comput. Vision Graphics Image Process. 36, 139–161 (1986)CrossRefGoogle Scholar
  8. 8.
    Illingworth, J., Kittler, J.: The adaptive Hough transform. IEEE Trans. Pattern Anal. Machine Intell. 9(5), 690–698 (1987)CrossRefGoogle Scholar
  9. 9.
    Ben-Tzvi, D., Sandler, M.B.: A combinatorial Hough transform. Pattern Recognition Lett. 11(3), 167–174 (1990)zbMATHCrossRefGoogle Scholar
  10. 10.
    Princen, J., Illingworth, J., Kittler, J.: A hierarchical approach to line extraction based on the Hough transform. Comput. Vision Graphics Image Process. 52(1), 57–77 (1990)CrossRefGoogle Scholar
  11. 11.
    Atiquzzaman, M.: Multiresolution Hough transform—an efficient method of detecting patterns in images. IEEE Trans. Pattern Anal. Machine Intell. 14(11), 1090–1095 (1992)CrossRefGoogle Scholar
  12. 12.
    Canny, J.F.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Machine Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anand T.V.
    • 1
  • Madhu S. Nair
    • 2
  • Rao Tatavarti
    • 3
  1. 1.Department of Computer ScienceRajagiri College of Social SciencesKochiIndia
  2. 2.Department of Computer ScienceUniversity of KeralaThiruvananthapuramIndia
  3. 3.Department of Civil EngineeringGayatri Vidya Parishad College of EngineeringVisakhapatnamIndia

Personalised recommendations