A New Small World Lattice

  • Abhishek Parakh
  • Subhash Kak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7135)


This paper considers a scalable lattice that may be used to generate models of random small world networks. We describe its properties and investigate its robustness to random node failures. We also define group and reachability coefficients to characterize the properties of the network. Simulation results are presented that show that the new coefficients well describe a social network.


Social Network Random Network Small World Small World Network Link Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barabasi, A., Albert, R.: Emergence of Scaling in Random Networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Caverlee, J., Liu, L., Webb, S.: The socialtrust framework for trusted social information management: Architecture and algorithms. Information Sciences 180(1), 95–112 (2010); Special Issue on Collective Intelligence (2010) CrossRefGoogle Scholar
  3. 3.
    Haythornthwaite, C.: Social network analysis: An approach and technique for the study of information exchange. Library & Information Science Research 18(4), 323–342 (1996)CrossRefGoogle Scholar
  4. 4.
    Knuth, D.E.: The Art of Computer Programming, 2nd edn. Sorting and Searching, vol. 3. Addison Wesley Longman Publishing Co., Inc., Redwood City (1998)Google Scholar
  5. 5.
    Monclar, R., Tecla, A., Oliveira, J., de Souza, J.M.: Mek: Using spatial-temporal information to improve social networks and knowledge dissemination. Information Sciences 179(15), 2524–2537 (2009)CrossRefGoogle Scholar
  6. 6.
    Ni, Y., Xie, L., Liu, Z.-Q.: Minimizing the expected complete influence time of a social network. Information Sciences 180(13), 2514–2527 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Parakh, A., Kak, S.: A key distribution scheme for sensor networks using structured graphs. In: International Conference on Emerging Trends in Electronic and Photonic Devices Systems, ELECTRO 2009, pp. 10–13 (December 2009)Google Scholar
  8. 8.
    Parakh, A., Kak, S.: Efficient key management in sensor networks. In: 2010 IEEE GLOBECOM Workshops (GC Wkshps), pp. 1539–1544 (December 2010)Google Scholar
  9. 9.
    Stoica, I., Morris, R., Liben-Nowell, D., Karger, D.R., Kaashoek, M.F., Dabek, F., Balakrishnan, H.: Chord: a scalable peer-to-peer lookup protocol for internet applications. IEEE/ACM Transactions on Networking 11(1), 17–32 (2003)CrossRefGoogle Scholar
  10. 10.
    Varshney, L.: Local fidelity, constrained codes, and the meru prastara. IEEE Potentials 27(2), 27–32 (2008)CrossRefGoogle Scholar
  11. 11.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Abhishek Parakh
    • 1
  • Subhash Kak
    • 2
  1. 1.College of Information Science and TechnologyUniversity of Nebraska at OmahaOmahaUSA
  2. 2.Computer Science DepartmentOklahoma State UniversityStillwaterUSA

Personalised recommendations