Diagnostic Magnetic Resonance Technology

  • Changwook Min
  • Huilin Shao
  • David Issadore
  • Monty Liong
  • Ralph Weissleder
  • Hakho Lee
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


For the sensitive and quantitative measurement of protein biomarkers, pathogens, and cells in clinical samples, magnetic nanoparticles (MNPs) offer unique advantages over traditional detection methods. Specifically, due to the inherently negligible magnetic background of biological material, MNPs can be used to obtain highly sensitive measurements in minimally processed samples. Our detection platform, termed diagnostic magnetic resonance (DMR), exploits MNPs to modulate the nuclear magnetic spin-spin relaxation time of water. Here, we review work done by our group to develop more effective MNP biosensors, advanced conjugational strategies to target the MNPs to molecular targets, and highly sensitive miniaturized NMR systems. We demonstrate this platform as a robust and easy-to-use system for the detection of a wide range of targets in clinical settings including whole cells, proteins, DNA/mRNA, metabolites, drugs, viruses, and bacteria.


Nuclear Magnetic Resonance Nuclear Magnetic Resonance Data Nuclear Magnetic Resonance Signal Solenoidal Coil Nuclear Magnetic Resonance Probe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank T. J. Yoon, J. H. Chung, J. B. Haun, and N. Sergeyev for assistance with experiments and R. M. Westervelt (Harvard) and C. Castro (MGH) for many helpful discussions. This work was supported in part by the following NIH grants: U54CA151884, R01EB010011, R01EB004626, P01CA069246, P50CA86355, U01CA141556, U24CA092782, and R21CA14122. H. Shao acknowledges financial support from the B.S.-Ph.D. National Science Scholarship awarded by the Agency for Science, Technology and Research, Singapore.


  1. 1.
    R. Etzioni et al., The case for early detection. Nat. Rev. Cancer 3, 243–252 (2003)CrossRefGoogle Scholar
  2. 2.
    R. Fan et al., Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat. Biotechnol. 26, 1373–1378 (2008)CrossRefGoogle Scholar
  3. 3.
    D.A. Giljohann, and C.A. Mirkin, Drivers of biodiagnostic development. Nature 462, 461–464 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    M.M. Cheng et al., Nanotechnologies for biomolecular detection and medical diagnostics. Curr. Opin. Chem. Biol. 10, 11–19 (2006)CrossRefGoogle Scholar
  5. 5.
    A.G. Tibbe et al., Optical tracking and detection of immunomagnetically selected and aligned cells. Nat. Biotechnol. 17, 1210–1213 (1999) 1999.Google Scholar
  6. 6.
    M.M. Wang et al., Microfluidic sorting of mammalian cells by optical force switching. Nat. Biotechnol. 23, 83–87 (2005)CrossRefGoogle Scholar
  7. 7.
    E. Stern et al., Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445, 519–522 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    G. Zheng et al., Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23, 1294–1301 (2005)CrossRefGoogle Scholar
  9. 9.
    S.C. Bendall et al., Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    J. Cheon, and J.H. Lee, Synergistically integrated nanoparticles as multimodal probes for nanobiotechnology. Acc. Chem. Res. 41, 1630–1640 (2008)CrossRefGoogle Scholar
  11. 11.
    N.A. Frey et al., Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 38, 2532–2542 (2009)CrossRefGoogle Scholar
  12. 12.
    Y.W. Jun, J.W. Seo, and J. Cheon, Nanoscaling laws of magnetic nanoparticles and their applicabilities in biomedical sciences. Acc. Chem. Res. 41, 179–189 (2008)CrossRefGoogle Scholar
  13. 13.
    Q.A. Pankhurst et al., Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 36, 167–181 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    Y.R. Chemla et al., Ultrasensitive magnetic biosensor for homogeneous immunoassay. Proc. Natl. Acad. Sci. U.S.A. 97, 14268–14272 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    R.L. Millen et al., Giant magenetoresistive sensors. 2. Detection of biorecognition events at self-referencing and magnetically tagged arrays. Anal. Chem. 80, 7940–7946 (2008)Google Scholar
  16. 16.
    V. Schaller et al., Towards an electrowetting-based digital microfluidic platform for magnetic immunoassays. Lab Chip 9, 3433–3436 (2009)CrossRefGoogle Scholar
  17. 17.
    D.R. Baselt et al., A biosensor based on magnetoresistance technology. Biosens. Bioelectron. 13, 731–739 (1998)CrossRefGoogle Scholar
  18. 18.
    R.S. Gaster et al., Matrix-insensitive protein assays push the limits of biosensors in medicine. Nat. Med. 15, 1327–1332 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    R.L. Millen et al., Giant magnetoresistive sensors and superparamagnetic nanoparticles: a chip-scale detection strategy for immunosorbent assays. Anal. Chem. 77, 6581–6587 (2005)CrossRefGoogle Scholar
  20. 20.
    S.J. Osterfeld et al., Multiplex protein assays based on real-time magnetic nanotag sensing. Proc. Natl. Acad. Sci. U.S.A. 105, 20637–20640 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    T. Aytur et al., A novel magnetic bead bioassay platform using a microchip-based sensor for infectious disease diagnosis. J. Immunol. Methods 314, 21–29 (2006)CrossRefGoogle Scholar
  22. 22.
    H. Lee et al., Chip-NMR biosensor for detection and molecular analysis of cells. Nat. Med. 14, 869–874 (2008)CrossRefGoogle Scholar
  23. 23.
    M. Gueron, Nuclear-relaxation in macromolecules by paramagnetic-ions – novel mechanism. J. Magn. Reson. 19, 58–66 (1975)Google Scholar
  24. 24.
    J.M. Perez et al., DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA-cleaving agents. J. Am. Chem. Soc. 124, 2856–2857 (2002)CrossRefGoogle Scholar
  25. 25.
    H. Lee, T.J. Yoon, and R. Weissleder, Ultrasensitive detection of bacteria using core-shell nanoparticles and an NMR-filter system. Angew. Chem. Int. Ed Engl. 48, 5657–5660 (2009)CrossRefGoogle Scholar
  26. 26.
    J.B. Haun et al., Micro-NMR for rapid molecular analysis of human tumor samples. Sci. Transl. Med. 3, 71ra16 (2011)Google Scholar
  27. 27.
    J.B. Haun et al., Bioorthogonal chemistry amplifies nanoparticle binding and enhances the sensitivity of cell detection. Nat. Nanotechnol. 5, 660–665 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    H. Lee et al., Rapid detection and profiling of cancer cells in fine-needle aspirates. Proc. Natl. Acad. Sci. U.S.A. 106, 12459–12464 (2009)ADSCrossRefGoogle Scholar
  29. 29.
    M. Liong et al., Multiplexed magnetic labeling amplification using oligonucleotide hybridization. Adv. Mater. 23, H254–H257 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    P. Gillis, and S.H. Koenig, Transverse relaxation of solvent protons induced by magnetized spheres: application to ferritin, erythrocytes, and magnetite. Magn. Reson. Med. 5, 323–345 (1987)CrossRefGoogle Scholar
  31. 31.
    Y. Gossuin et al., Magnetic resonance relaxation properties of superparamagnetic particles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 1, 299–310 (2009)CrossRefGoogle Scholar
  32. 32.
    R.A. Brooks, F. Moiny, and P. Gillis, On T2-shortening by weakly magnetized particles: the chemical exchange model. Magn. Reson. Med. 45, 1014–1020 (2001)CrossRefGoogle Scholar
  33. 33.
    P. Gillis, F. Moiny, and R.A. Brooks, On T(2)-shortening by strongly magnetized spheres: a partial refocusing model. Magn. Reson. Med. 47, 257–263 (2002)CrossRefGoogle Scholar
  34. 34.
    C. Massin et al., High-Q factor RF planar microcoils for micro-scale NMR spectroscopy. Sens. Actuat. A 97–98, 280–288 (2002)CrossRefGoogle Scholar
  35. 35.
    R.A. Brooks, T(2)-shortening by strongly magnetized spheres: a chemical exchange model. Magn. Reson. Med. 47, 388–391 (2002)CrossRefGoogle Scholar
  36. 36.
    J.M. Perez et al., Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20, 816–820 (2002)Google Scholar
  37. 37.
    L. Josephson et al., High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug. Chem. 10, 186–191 (1999)CrossRefGoogle Scholar
  38. 38.
    J.H. Lee et al., Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13, 95–99 (2007)CrossRefGoogle Scholar
  39. 39.
    S. Sun et al., Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126, 273–279 (2004)CrossRefGoogle Scholar
  40. 40.
    Y.W. Jun et al., Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 127, 5732–5733 (2005)CrossRefGoogle Scholar
  41. 41.
    S. Peng et al., Synthesis and stabilization of monodisperse Fe nanoparticles. J. Am. Chem. Soc. 128, 10676–10677 (2006)CrossRefGoogle Scholar
  42. 42.
    T.J. Yoon et al., Highly magnetic core-shell nanoparticles with a unique magnetization mechanism. Angew. Chem. Int. Ed Engl. 50, 4663–4666 (2011)CrossRefGoogle Scholar
  43. 43.
    J. Park et al., Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    Z. Chen et al., Preparation and characterization of water-soluble monodisperse magnetic iron oxide nanoparticles via surface double-exchange with DMSA. Colloid. Surf. A 316, 210–216 (2008)CrossRefGoogle Scholar
  45. 45.
    N. Fauconnier et al., Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J. Colloid Interface Sci. 194, 427–433 (1997)CrossRefGoogle Scholar
  46. 46.
    M. Liong et al., Carboxymethylated polyvinyl alcohol stabilizes doped ferrofluids for biological applications. Adv. Mater. 22, 5168–5172 (2010)CrossRefGoogle Scholar
  47. 47.
    J. Panyam, and V. Labhasetwar, Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev. 55, 329–347 (2003)CrossRefGoogle Scholar
  48. 48.
    N.A. Peppas, and R.E.J. Benner, Proposed method of intracordal injection and gelation of poly (vinyl alcohol) solution in vocal cords: polymer considerations. Biomaterials 1, 158–162 (1980)CrossRefGoogle Scholar
  49. 49.
    K.M. Rosenblatt, and H. Bunjes, Poly(vinyl alcohol) as emulsifier stabilizes solid triglyceride drug carrier nanoparticles in the alpha-modification. Mol. Pharm. 6, 105–120 (2009)CrossRefGoogle Scholar
  50. 50.
    N.K. Devaraj et al., Fast and sensitive pretargeted labeling of cancer cells through a tetrazine/trans-cyclooctene cycloaddition. Angew. Chem. Int. Ed Engl. 48, 7013–7016 (2009)CrossRefGoogle Scholar
  51. 51.
    M.R. Karver, R. Weissleder, and S.A. Hilderbrand, Synthesis and evaluation of a series of 1,2,4,5-tetrazines for bioorthogonal conjugation. Bioconjug. Chem. 16, 2263–2270 (2011)CrossRefGoogle Scholar
  52. 52.
    S.S. Agasti et al., Supramolecular host-guest interaction for labeling and detection of cellular biomarkers. Angew Chem Int Ed Engl 51, 450–454 (2012)CrossRefGoogle Scholar
  53. 53.
    A.G. Webb, Radiofrequency microcoils in magnetic resonance. Prog. Nucl. Magn. Reson. Spectrosc. 31, 1–42 (1997)CrossRefGoogle Scholar
  54. 54.
    J. Grimm et al., Novel nanosensors for rapid analysis of telomerase activity. Cancer Res. 64, 639–643 (2004)CrossRefGoogle Scholar
  55. 55.
    C. Kaittanis, S.A. Naser, and J.M. Perez, One-step, nanoparticle-mediated bacterial detection with magnetic relaxation. Nano Lett. 7, 380–383 (2007)ADSCrossRefGoogle Scholar
  56. 56.
    J.M. Perez, L. Josephson, and R. Weissleder, Use of magnetic nanoparticles as nanosensors to probe for molecular interactions. Chembiochem 5, 261–264 (2004)CrossRefGoogle Scholar
  57. 57.
    D. Issadore et al., Miniature magnetic resonance system for point-of-care diagnostics. Lab Chip 11, 2282–2287 (2011)CrossRefGoogle Scholar
  58. 58.
    E. Danieli et al., Small magnets for portable NMR spectrometers. Angew. Chem. Int. Ed Engl. 49, 4133–4135 (2010)CrossRefGoogle Scholar
  59. 59.
    A. Moore, R. Weissleder, and A.J. Bogdanov, Uptake of dextran-coated monocrystalline iron oxides in tumor cells and macrophages. J. Magn. Reson. Imaging 7, 1140–1145 (1997)CrossRefGoogle Scholar
  60. 60.
    S. Nagrath et al., Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007)ADSCrossRefGoogle Scholar
  61. 61.
    L.V. Sequist et al., The CTC-chip: an exciting new tool to detect circulating tumor cells in lung cancer patients. J. Thorac. Oncol. 4, 281–283 (2009)CrossRefGoogle Scholar
  62. 62.
    S.B. Ho et al., Heterogeneity of mucin gene expression in normal and neoplastic tissues. Cancer Res. 53, 641–651 (1993)Google Scholar
  63. 63.
    T.J. Roth et al., B7-H3 ligand expression by prostate cancer: a novel marker of prognosis and potential target for therapy. Cancer Res. 67, 7893–7900 (2007)CrossRefGoogle Scholar
  64. 64.
    C.L. Vogel et al., Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J. Clin. Oncol. 20, 719–726 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Changwook Min
    • 1
  • Huilin Shao
    • 1
  • David Issadore
    • 3
  • Monty Liong
    • 1
  • Ralph Weissleder
    • 1
    • 2
  • Hakho Lee
    • 1
  1. 1.Center for Systems BiologyMassachusetts General HospitalBostonUSA
  2. 2.Department of Systems BiologyHarvard Medical SchoolBostonUSA
  3. 3.BioengineeringUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations