Dielectric Detection Using Biochemical Assays

  • Yang-Kyu Choi
  • Chang-Hoon Kim
  • Jae-Hyuk Ahn
  • Jee-Yeon Kim
  • Sungho Kim
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


Point-of-care (POC) diagnostics typically make use of labeling techniques that employ fluorescent, chemiluminescent, redox, or radioactive probes. Although such methods provide high sensitivity, they are complicated because their labeling steps require a significant amount of time and labor in their execution and in the analysis of their results. Thus, the portability, which is meant to be the primary advantage of POC systems, is sacrificed. The use of electronic devices for POC systems circumvents this problem, enabling label-free detection, miniaturization, and low costs. Label-free detection is made possible by direct electrical measurement of the sample molecules, which works by monitoring changes in their intrinsic electrical properties. Miniaturization and the integration of sensors and readout circuitry have been enabled by industrialized microfabrication technology. By integrating the sensors and circuitry onto a monolithic substrate, the fabrication cost can be remarkably reduced.


Drain Current Gate Dielectric Gate Oxide Lateral Electric Field Prostate Specific Antigen Antibody 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Research and Development Program under grant NRDP, 2012-0001131 for the development of biomedical function monitoring biosensors and by the Center for Integrated Smart Sensor through the National Research Foundation of Korea funded by the Ministry of Education, Science, and Technology under Grant CISS-2011-0031845.


  1. 1.
    J. Wang, Electrochemical biosensors: towards point-of-care cancer diagnostics. Biosens. Bioelectron. 21(10), 1887–1892 (2006)CrossRefGoogle Scholar
  2. 2.
    L.J. Kricka, Nucleic acid detection technologies – labels, strategies, and formats. Clin. Chem. 45(4), 453–458 (1999)Google Scholar
  3. 3.
    J. Fritz, E.B. Cooper, S. Gaudet, P.K. Sorger, and S.R. Manalis, Electronic detection of DNA by its intrinsic molecular charge. Proc. Natl. Acad. Sci. U.S.A. 99, 14142–14146 (2002)ADSCrossRefGoogle Scholar
  4. 4.
    J.R. Macdonald (ed.), Impedance Spectroscopy (Wiley, New-York, 1987)Google Scholar
  5. 5.
    I. Rubinstein (ed.), Physical Electrochemistry: Principle, Method and Applications (Marcel Dekker, New-York, 1995)Google Scholar
  6. 6.
    J. Rickert, W. Göpel, W. Beck, G. Jung, and P. Heiduschka, A ‘mixed’ self-assembled monolayer for an impedimetric immunosensor. Biosens. Bioelectron. 11(8), 757–768 (1996)CrossRefGoogle Scholar
  7. 7.
    S. Hleli, C. Martelet, A. Abdelghani, N. Burais, and N. Jaffrezic-Reuault, Atrazine analysis using an impedimetric immunosensor based on mixed biotinylated self-assembled monolayer. Sens. Actuators B 113(2), 711–717 (2006)CrossRefGoogle Scholar
  8. 8.
    C. Ruan, L. Yang, and Y. Li, Immunobiosensor chips for detection of Escherichia coli O157:H7 using electrochemical impedance spectroscopy. Anal. Chem. 74(18), 4814–4820 (2002)CrossRefGoogle Scholar
  9. 9.
    F. Patolsky, A. Lichtenstein, and I. Willner, Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nat. Biotechnol. 19(3), 253–257 (2001)CrossRefGoogle Scholar
  10. 10.
    W. Cai, J.R. Peck, D.W. van der Weide, and R.J. Hamers, “Direct electrical detection of hybridization at DNA-modified silicon surfaces. Biosens. Bioelectron. 19(9), 1013–1019 (2004)CrossRefGoogle Scholar
  11. 11.
    F. Lucarelli, G. Marrazza, A.P.F. Turner, and M. Mascini, Carbon and gold electrodes as electrochemical transducers for DNA hybridisation sensors. Biosens. Bioelectron. 19(6), 515–530 (2004)CrossRefGoogle Scholar
  12. 12.
    L. Alfonta, A.K. Singh, and I. Willner, Liposomes labeled with biotin and horseradish peroxidase: a probe for the enhanced amplification of antigen-antibody or oligonucleotide – DNA sensing processes by the precipitation of an insoluble product on electrodes. Anal. Chem. 73(1), 91–102 (2001)CrossRefGoogle Scholar
  13. 13.
    F. Patolsky, A. Lichtenstein, and I. Willner, Electrochemical transduction of liposome-amplified DNA sensing. Angew. Chem. Int. Ed. 39(5), 940–943 (2000)CrossRefGoogle Scholar
  14. 14.
    F. Patolsky, A. Lichtenstein, and I. Willner, Electronic transduction of DNA sensing processes on surfaces: amplification of DNA detection and analysis of single-base mismatches by tagged liposomes. J. Am. Chem. Soc. 123(22), 5194–5205 (2001)CrossRefGoogle Scholar
  15. 15.
    O. Ouerghi, A. Senillou, N. Jaffrezic-Renault, C. Martelet, H. Ben Ouada, and S. Cosnier, Gold electrode functionalized by electropolymerization of a cyano N-substituted pyrrole: application to an impedimetric immunosensor. J. Electroanal. Chem. 501(1-2), 62–69 (2001)Google Scholar
  16. 16.
    Y. Xu, H. Cai, P.-G. He, and Y.-Z. Fang, Probing DNA hybridization by impedance measurement based on CdS-oligonucleotide nanoconjugates. Electroanalysis 16(1-2), 150–155 (2004)CrossRefGoogle Scholar
  17. 17.
    J. Wang, J.A. Profitt, M.J. Pugia, and I.I. Suni, Au nanoparticle conjugation for impedance and capacitance signal amplification in biosensors. Anal. Chem. 78(6), 1769–1773 (2006)CrossRefGoogle Scholar
  18. 18.
    A. Star, J.-C.P. Gabriel, K. Bradley, and G. Grüner, Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 3(4), 459–463 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    A. Kim, C.S. Ah, H.Y. Yu, J.-H. Yang, I.-B. Baek, C.-G. Ahn, C. W. Park, M.S. Jun, and S. Lee, Ultrasensitive, label-free, and real-time immunodetection using silicon field-effect transistors. Appl. Phys. Lett. 91(10), 103901 (2007)Google Scholar
  20. 20.
    P. Bergveld, Development, operation and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans. Biomed. Eng. BME-19(5), 342–351 (1972)CrossRefGoogle Scholar
  21. 21.
    H.H. Van den Vlekkert et al., A pH-ISFET and an integrated pH-pressure sensor with back-side contacts. Sens. Actuator 14(2), 165–176 (1988)CrossRefGoogle Scholar
  22. 22.
    J.C. Chou, C.N. Hsiao, The hysteresis and drift effect of hydrogenated amorphous silicon for ISFET. Sens. Actuators B 66(1-3), 181–183 (2000)CrossRefGoogle Scholar
  23. 23.
    O. Leistiko, The selective and temperature characteristics of ion sensitive field effect transistors. Phys. Scr. 18(6), 445–450 (1978)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Cui, Q. Wei, H. Park and C.M. Lieber, Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    W.U. Wang, C. Chen, K.-H. Lin, Y. Fang, Y. and C.M. Lieber, Label-free detection of small-molecule-protein interactions by using nanowire nanosensors. Proc. Natl. Acad. Sci. U.S.A. 102(9), 3208–3212 (2005)Google Scholar
  26. 26.
    G. Zheng, F. Patolsky, Y. Cui, W.U. Wang, and C.M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23(10), 1294–1301 (2005)CrossRefGoogle Scholar
  27. 27.
    J.-I. Hahm, and C.M. Lieber, Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett. 4(1), 51–54 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    F. Parolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang and C.M. Lieber, Electrical detection of single viruses. Proc. Natl. Acad. Sci. U.S.A. 101(39), 14017–14022 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    E. Stern, J.F. Klemic, D.A. Routenberg, P.N. Wyrembak, D.B.T.-Evans, A.D. Hamilton, D.A. LaVan, T.M. Fahmy and M.A. Reed, Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 445(2), 519–522 (2007)Google Scholar
  30. 30.
    H. Im, X.-J. Haung, B. Gu and Y.-K. Choi, A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotech. 2(7), 430–434 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    B. Gu, T.J. Park, J.-H. Ahn, X.-J. Huang, S.Y. Lee, and Y.-K. Choi, Nanogap field-effect transistor biosensors for electrical detection of avian influenza. Small 5(21), 2407–2412 (2009)CrossRefGoogle Scholar
  32. 32.
    M. Im, J.-H. Ahn, J.-W. Han, T.J. Park, S.Y. Lee, Y.-K. Choi, Development of a point-of-care testing platform with a nanogap-embedded separated double-gate field effect transistor array and its readout system for detection of avian influenza. IEEE Sens. J. 11(2), 351–360 (2011)CrossRefGoogle Scholar
  33. 33.
    R.B. Schoch, J. Han, and P. Renaud, Transport phenomena in nanofluidics. Rev. Mod. Phys. 80(3), 839–883 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    A. Bezryadin, and C. Dekker, Nanofabrication of electrodes with sub-5 nm spacing for transport experiments on single molecules and metal clusters. J. Vac. Sci. Technol. B 15(4), 793–799 (1997)CrossRefGoogle Scholar
  35. 35.
    D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Direct measurement of electrical transport through DNA molecules. Nature 403(6770), 635–638 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (Wiley, New York, 1981)Google Scholar
  37. 37.
    G.D. Wilk, R.M. Wallace, and J.M. Anthony, High-\(\kappa \) dielectrics: current status and materials properties considerations. J. Appl. Phys. 89(10), 5243–5275 (2001)Google Scholar
  38. 38.
    C.-H. Kim, C. Jung, K.-B. Lee, H.G. Park, and Y.-K. Choi, Label-free DNA detection with a nanogap embedded complementary metal oxide semiconductor. Nanotechnology 22(13), 1032–1039 (2011)CrossRefGoogle Scholar
  39. 39.
    K.-W. Lee, S.-J. Choi, J.-H. Ahn, D.-I. Moon, T.J. Park, S.Y. Lee, Y.-K. Choi, An underlap field-effect transistor for electrical detection of influenza. Appl. Phys. Lett. 96(3), 033703 (2010)Google Scholar
  40. 40.
    B. Bhushan, (ed.), Springer Handbook of Nanotechnology (Springer, Heidelberg, 2004)Google Scholar
  41. 41.
    G.-J. Zhang, J.H. Chua, R.-E. Chee, A. Agarwal, and S.M. Wong, Label-free direct detection of MiRNAs with silicon nanowire biosensors. Biosens. Bioelectron. 24(8), 2504–2508 (2009)CrossRefGoogle Scholar
  42. 42.
    J.-H. Ahn, S.-J. Choi, J.-W. Han, T.J. Park, S.Y. Lee, and Y.-K. Choi, Double-gate nanowire field effect transistor for a biosensor. Nano Lett. 10(8), 2934–2938 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    M. Masahara, Y. Liu, K. Sakamoto, K. Endo, T. Mausukawa, K. Ishii, T. Sekigawa, H. Yamauchi, H. Tanoue, S. Kanemaru, H. Koike, and E. Suzuki, Demonstration, analysis, and device design considerations for independent DG MOSFETs. IEEE Trans. Electron. Devices 52(9), 2046–2053 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    O. Knopfmacher, A. Tarasov, W. Fu, M. Wipf, B. Niesen, M. Calame, and C. Schönenberger, Nernst limit in dual-gated Si-nanowire FET sensors. Nano Lett. 10(6), 2268–2274 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    M.T. Martinez, Y.–C. Tseng, N. Ormategui, I. Loinaz, R. Eritja, and J. Bokor, Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors. Nano Lett. 9, 530–536 (2009)Google Scholar
  46. 46.
    I. Heller, J. Mannik, S.G. Lemay, and C. Dekker, Optimizing the signal-to-noise ratio for biosensing with carbon nanotube transistors. Nano Lett. 9, 377–382 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    N. Elfstrom, R. Juhasz, I. Sychugov, T. Engfeldt, A.E. Karlstrom, and J. Linnros, Surface charge sensitivity of silicon nanowires: size dependence. Nano Lett. 7, 2608–2612 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    J.S. Brugler, and P.G.A. Jespers, Charge pumping in MOS devices. IEEE Trans. Electron. Devices ED-16, 297–302 (1969)CrossRefGoogle Scholar
  49. 49.
    P. Dutta, and P.M. Horn, Low-frequency fluctuations in solids: 1/f noise. Rev. Mod. Phys. 53, 497–516 (1981)ADSCrossRefGoogle Scholar
  50. 50.
    S. Kim, J.–H. Ahn, T.J. Park, S.Y. Lee, and Y.–K. Choi, A biomolecular detection method based on charge pumping in a nanogap embedded field-effect-transistor biosensor. Appl. Phys. Lett. 94, 243903 (2009)Google Scholar
  51. 51.
    S. Kim, J.–H. Ahn, T.J. Park, S.Y. Lee, and Y.–K. Choi, Charge pumping technique to analyze the effect of intrinsically retained charges and extrinsically trapped charges in biomolecules by use of a nanogap embedded biotransistor. Appl. Phys. Lett. 96, 053702 (2010)Google Scholar
  52. 52.
    S. Kim, J.–H. Ahn, T.J. Park, S.Y. Lee, and Y.–K. Choi, Comprehensive study of a detection mechanism and optimization strategies to improve sensitivity in a nanogap-embedded biotransistor. J. Appl. Phys. 107, 114705 (2010)Google Scholar
  53. 53.
    S. Kim, J.–Y. Kim, J.–H. Ahn, T.J. Park, S.Y. Lee, and Y.–K. Choi, A charge pumping technique to identify biomolecular charge polarity using a nanogap embedded biotransistor. Appl. Phys. Lett. 97, 073702 (2010)Google Scholar
  54. 54.
    G. Zheng, X.P.A. Gao, and C.M. Lieber, Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Lett. 10, 3179–3183 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    G. Groeseneken, H.E. Maes, N. Beltran, and R.F. Keersmaecker, A reliable approach to charge-pumping measurements in MOS transistors. IEEE Trans. Electron. Devices ED-31, 42–53 (1984)CrossRefGoogle Scholar
  56. 56.
    R.S. Muller, T.I. Kamins, M. Chan, Device Electronics for Integrated Circuits. 3rd edn. (Willey, New York, 2002), pp. 490–495Google Scholar
  57. 57.
    J.-Y. Kim, J.-H. Ahn, S.-J. Choi, M. Im, S. Kim, J. P. Duarte, C.-H. Kim, T. J. Park, S. Y. Lee, and Y.-K. Choi, An underlap channel-embedded field-effect fransistor for biosensor application in watery and dry environment, IEEE Trans. Nanotechnol. 11(2), 390–394 (2012)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yang-Kyu Choi
    • 1
  • Chang-Hoon Kim
    • 1
  • Jae-Hyuk Ahn
    • 1
  • Jee-Yeon Kim
    • 1
  • Sungho Kim
    • 1
  1. 1.Department of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea

Personalised recommendations