Lensfree Computational Microscopy Tools for On-Chip Imaging of Biochips

Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


The use of optical imaging for medical diagnostics at the point of care (POC) has great potential, but is limited by cost and the need for highly trained personnel. To this end, the cost, complexity, and size of optical microscopy devices can be reduced through the use of computation. These techniques can perform particularly well at specific tasks such as cytometry, water quality management, and disease diagnostics. This chapter focuses on lensfree on-chip imaging techniques that are based on partially coherent digital in-line holography and are especially promising for imaging of biochips toward field-use and telemedicine applications. This emerging imaging platform discards most optical components that are found in traditional microscopes such as lenses and compensates for the lack of physical components in the digital domain. Widely available image sensors and abundant computational power are used to digitally process the acquired raw data to recover traditional microscope-like images with submicron resolution over large sample volumes within biochips.


Axial Resolution Sensor Plane Illumination Angle Bayer Pattern Waterborne Parasite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. Betzig et al., Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793), 1642–1645 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    E. Chung, D. Kim, Y. Cui, Y.-H. Kim, P.T.C. So, Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens. Biophys. J. 93(5), 1747–1757 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    K. Goda, K.K. Tsia, B. Jalali, Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature 458(7242), 1145–1149 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    M.G.L. Gustafsson, Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. 102(37), 13081–13086 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    S.W. Hell, Toward fluorescence nanoscopy. Nat. Biotechnol. 21(11), 1347–1355 (2003)CrossRefGoogle Scholar
  6. 6.
    S.T. Hess, T.P.K. Girirajan, M.D. Mason, Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91(11), 4258–4272 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    M.J. Rust, M. Bates, X. Zhuang, Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3(10), 793–796 (2006)CrossRefGoogle Scholar
  8. 8.
    W.R. Zipfel, R.M. Williams, W.W. Webb, Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21(11), 1369–1377 (2003)CrossRefGoogle Scholar
  9. 9.
    C. Oh, S.O. Isikman, B. Khademhosseini, A. Ozcan, On-chip differential interference contrast microscopy using lensless digital holography. Opt. Exp. 18, 4717–4726 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    O. Mudanyali, D. Tseng, C. Oh, S.O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab Chip 10, 1417–1428 (2010)CrossRefGoogle Scholar
  11. 11.
    D. Tseng, O. Mudanyali, C. Oztoprak, S.O. Isikman, I. Sencan, O. Yaglidere, A. Ozcan, Lensfree microscopy on a cell-phone. Lab Chip 10, 1787–1792 (2010)CrossRefGoogle Scholar
  12. 12.
    S. Seo, S.O. Isikman, I. Sencan, O. Mudanyali, T. Su, W. Bishara, A. Erlinger, A. Ozcan, High-throughput lensfree blood analysis on a chip. Anal. Chem. 82, 4621–4627 (2010)CrossRefGoogle Scholar
  13. 13.
    W. Bishara, T. Su, A.F. Coskun, A. Ozcan, Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution. Opt. Exp. 18, 11181–11191 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    O. Mudanyali, C. Oztoprak, D. Tseng, A. Erlinger, A. Ozcan, Detection of waterborne parasites using field-portable and cost-effective lensfree microscopy. Lab on a Chip 10, 2419–2423 (2010)CrossRefGoogle Scholar
  15. 15.
    T. Su, A. Erlinger, D. Tseng, A. Ozcan, A compact and light-weight automated semen analysis platform using lensfree on-chip microscopy. Anal. Chem. 82, 8307–8312 (2010)CrossRefGoogle Scholar
  16. 16.
    B. Khademhosseini, G. Biener, I. Sencan, A. Ozcan, Lensfree color imaging on a nano-structured chip using compressive decoding. Appl. Phys. Lett. 97, 211112–211114 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    H. Zhu, O. Yaglidere, T. Su, D. Tseng, A. Ozcan, Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip 11, 315–322 (2010)CrossRefGoogle Scholar
  18. 18.
    A.F. Coskun, I. Sencan, T. Su, A. Ozcan, Wide-field lensless fluorescent microscopy using a tapered fiber-optic faceplate on a chip. Analyst (2011), 10.1039/C0AN00926AGoogle Scholar
  19. 19.
    W. Bishara, U. Sikora, O. Mudanyali, T. Su, O. Yaglidere, S. Luckhart, A. Ozcan, Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array. Lab Chip 11, 1276–1279 (2011)CrossRefGoogle Scholar
  20. 20.
    S.O. Isikman, W. Bishara, U. Sikora, O. Yaglidere, J. Yeah, A. Ozcan, Field-portable lensfree tomographic microscope. Lab Chip 11, 2222–2230 (2011)CrossRefGoogle Scholar
  21. 21.
    S.O. Isikman, W. Bishara, H. Zhu, A. Ozcan, Opto-fluidic tomography on a chip. Appl. Phys. Lett. 98, 161109–161111 (2011)CrossRefGoogle Scholar
  22. 22.
    S.O. Isikman, W. Bishara, S. Mavandadi, F.W. Yu, S. Feng, R. Lau, A. Ozcan, Lensfree optical tomographic microscope with a large imaging volume on a chip. Proc. Nat. Acad. Sci. 18, 7296–7301 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    L.M. Lee, X. Cui, C. Yang, The application of on-chip optofluidic microscopy for imaging Giardia lamblia trophozoites and cysts. Biomed Microdevices 11(5), 951–958 (2009)CrossRefGoogle Scholar
  24. 24.
    X. Cui et al., Lensless high-resolution on-chip optofluidic microscopes for Caenorhabditis elegans and cell imaging. Proc. Natl. Acad. Sci. U. S. A. 105(31), 10670–10675 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    D.N. Breslauer, R.N. Maamari, N.A. Switz, W.A. Lam, D.A. Fletcher, Mobile phone based clinical microscopy for global health applications. PLoS One 4(7), e6320 (2009)Google Scholar
  26. 26.
    J. Garcia-Sucerquia, W. Xu, S.K. Jericho, P. Klages, M.H. Jericho, H.J. Kreuzer, Digital in-line holographic microscopy. Appl. Opt. 45, 836–850 (2006)ADSCrossRefGoogle Scholar
  27. 27.
    W. Xu, M.H. Jericho, I.A. Meinertzhagen, H.J. Kreuzer, Digital in-line holography for biological applications. Proc. Natl. Acad. Sci. 98, 11301–11305 (2001)ADSCrossRefGoogle Scholar
  28. 28.
    D. Gabor, A new microscopic principle. Nature 161, 777–778 (1948)ADSCrossRefGoogle Scholar
  29. 29.
    J.W. Goodman, Introduction to Fourier optics (Roberts, Greenwood Village, 2005)Google Scholar
  30. 30.
    I. Yamaguchi, T. Zhang, Phase-shifting digital holography. Opt. Lett. 22, 1268–1270 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    E.N. Leith, J. Upatnieks, K.A. Haines, Microscopy by wavefront reconstruction. J. Opt. Soc. Am. 55, 981-986 (1965)ADSCrossRefGoogle Scholar
  32. 32.
    G. Situ, J.T. Sheridan, Holography: an interpretation from the phase-space point of view. Opt. Lett. 32(24), 3492 (2007)Google Scholar
  33. 33.
    J.R. Fienup, Reconstruction of an object from the modulus of its Fourier transform. Opt Lett. 3(1), 27 (1978)Google Scholar
  34. 34.
    A. Banjanovic, Special report: towards universal global mobile phone coverage. Euromonitor International, 2009Google Scholar
  35. 35.
    Z.J. Smith, K. Chu, A.R. Espenson, M. Rahimzadeh, A. Gryshuk, M. Molinaro, D.M. Dwyre, S. Lane, D. Matthwes, S.W. Hogiu, Cell-phone-based platform for biomedical device development and education applications. PLos One 6, e17150 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    S. Tachakra, X.H. Wang, R.S. Istepanian, Y.H. Song, Mobile e-health: the unwired evolution of telemedicine. Telemed. J. E. Health 9, 247–257 (2003)CrossRefGoogle Scholar
  37. 37.
    Y. Granot, A. Ivorra, B. Rubinsky, A new concept for medical imaging centered on cellular phone technology. PLoS One 3, e2075 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    J.M. Ruano-Lopez, M. Agirregabiria, G. Olabarria, D. Verdoy, D.D. Bang, M. Bu, A. Wolff, A. Voigt, J.A. Dziuban, R. Walczakg, J. Berganzoa, The SmartBioPhone, a point of care vision under development through two European projects: OPTOLABCARD and LABONFOIL. Lab Chip 9, 1495–1499 (2009)CrossRefGoogle Scholar
  39. 39.
    S.C. Park, M.K. Park, M.G. Kang, Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20(3), 21–36 (2003)ADSCrossRefGoogle Scholar
  40. 40.
    R.C. Hardie, High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system. Opt. Eng. 37(1), 247 (1998)Google Scholar
  41. 41.
    J. Hahn, S. Lim, K. Choi, R. Horisaki, D.J. Brady, Video-rate compressive holographic microscopic tomography. Opt Exp. 19, 7289–7298 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    D. J. Brady, K. Choi, D.L. Marks, R. Horisaki, S. Lim, Compressive holography. Opt Exp. 17, 13040–13049 (2009)Google Scholar
  43. 43.
    H. Meng, F. Hussain, In-line recording and off-axis viewing technique for holographic particle velocimetry. Appl. Opt. 34, 1827–1840 (1995)ADSCrossRefGoogle Scholar
  44. 44.
    J.B. Pawley (ed.), Handbook of Biological Confocal Microscopy (Plenum, New York, 1995)Google Scholar
  45. 45.
    J.G. Fujimoto, Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat. Biotech. 21, 1361–1367 (2003)CrossRefGoogle Scholar
  46. 46.
    J.M. Schmitt, Optical coherence tomography (OCT): a review. J. Sel. Top. Quant. Elect. 5, 1205–1215 (1999)CrossRefGoogle Scholar
  47. 47.
    J. Huisken, J. Swoger, F.D. Bene, J. Wittbrodt, E.H.K. Stelzer, Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305, 1007–1009 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    P.J. Keller, A.D. Schmidt, J. Wittbrodt, E.H.K. Stelzer, Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy. Science 322, 1065–1069 (2008)ADSCrossRefGoogle Scholar
  49. 49.
    J. Sharpe, U. Ahlgren, P. Perry, B. Hill, A. Ross, J. Hecksher-Sørensen, R. Baldock, D. Davidson, Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 296, 541–545 (2002)ADSCrossRefGoogle Scholar
  50. 50.
    B. Huang, W. Wang, M. Bates, X. Zhuang, Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    M. Fauver, E.J. Seibel, Three-dimensional imaging of single isolated cell nuclei using optical projection tomography. Opt Exp. 13, 4210–4223 (2005)ADSCrossRefGoogle Scholar
  52. 52.
    T.C. Poon, M.H. Wu, K. Shinoda, Y. Suzuki, Optical scanning holography. Proc. IEEE 84(5), 753–764 (1996)CrossRefGoogle Scholar
  53. 53.
    Y. Sung, W. Choi, C. Fang-Yen, K. Badizadegan, R.R. Dasari, M.S. Feld, Optical diffraction tomography for high resolution live cell imaging. Opt. Exp. 17, 266–277 (2009)ADSCrossRefGoogle Scholar
  54. 54.
    M. Debailleul, B. Simon, V. Georges, O. Haeberle, V. Lauer, Holographic microscopy and diffractive microtomography of transparent samples. Meas. Sci. Technol. 19, 074009 (2008)ADSCrossRefGoogle Scholar
  55. 55.
    F. Charrière, N. Pavillon, T. Colomb, C. Depeursinge, T.J. Heger, E.A.D. Mitchell, P. Marquet, B. Rappaz, Living specimen tomography by digital holographic microscopy: morphometry of testate amoeba. Opt. Exp. 14, 7005–7013 (2006)ADSCrossRefGoogle Scholar
  56. 56.
    L. Yu, M.K. Kim, Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method. Opt. Lett. 30, 2092–2094 (2005)ADSCrossRefGoogle Scholar
  57. 57.
    J. Jang, B. Javidi, Formation of orthoscopic three-dimensional real images in direct pickup one-step integral imaging. Opt. Eng. 42, 1869–1870 (2003)ADSCrossRefGoogle Scholar
  58. 58.
    O. Haeberle, K. Belkebir, H. Giovaninni, A. Sentenac, Tomographic diffractive microscopy: basics, techniques and perspectives. J. Mod. Optic 57, 686–699 (2010)ADSzbMATHCrossRefGoogle Scholar
  59. 59.
    M. Radermacher, Weighted Back-Projection Methods. Electron Tomography: Methods for Three Dimensional Visualization of Structures in the Cell, 2nd edn. (Springer, New York, 2006)Google Scholar
  60. 60.
    M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. (Cambridge University Press, Cambridge, UK, 1999). ch. XIIIGoogle Scholar
  61. 61.
    G.M. Whitesides, The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)ADSCrossRefGoogle Scholar
  62. 62.
    D. Psaltis, S.R. Quake, and C. Yang, Developing optofluidic technology through the fusion of microfluidics and optics. Nature 442(7101), 381–386 (2006)ADSCrossRefGoogle Scholar
  63. 63.
    W. Bishara, H. Zhu, A. Ozcan, Holographic opto-fluidic microscopy. Opt. Exp. 18(26), 27499 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Electrical Engineering DepartmentUniversity of CaliforniaLos AngelesUSA
  2. 2.California NanoSystems Institute, Bioengineering Department, Department of SurgeryUniversity of CaliforniaLos AngelesUSA

Personalised recommendations