Abstract
Microdevices enable clinical diagnostics to be miniaturized for use at the point-of-care (POC). Microdevices can be composed of microfilters, microchannels, microarrays, micropumps, microvalves, and microelectronics, and these mechanical and electrical components can be integrated onto chips to analyze and control biological objects at the microscale. The miniaturization of diagnostic tests offers many advantages over centralized laboratory testing, such as small reagent volumes, rapid analysis, small size, low power consumption, parallel analysis, and functional integration of multiple devices. Here, we review work on the development of microdevices to diagnose disease at POC settings.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
P.N. Floriano, Microchip-based assay systems: methods and applications: (Humana Press, Totowa, 2007)
L.J. Kricka, Microchips, microarrays, biochips and nanochips: personal laboratories for the 21st century, Clin. Chim. Acta 307, 219–223 (2001).
J. Lii, W. Hsu, W. Lee and S.K. Sia, Microfluidics, in Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, New York, 2006)
P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, and B.H. Weigl, Microfluidic diagnostic technologies for global public health. Nature 442, 412–418 (2006)
C.D. Chin, V. Linder, and S.K. Sia, Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab on a Chip 7, 41–57 (2007)
P. Yager, G.J. Domingo, and J. Gerdes, Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng. 10, 107–144 (2008)
S.K. Sia and L.J. Kricka, Microfluidics and point-of-care testing. Lab Chip 8, 1982–1983 (2008)
G.M. Whitesides, The origins and the future of microfluidics. Nature 442, 368–373 (2006)
J.B. Angell, S.C. Terry, and P.W. Barth, Silicon Micromechanical Devices. Sci. Am. 248, 44-55 (1983)
D. Mabey, R.W. Peeling, A. Ustianowski, and M.D. Perkins, Diagnostics for the developing world. Nat. Rev. Microbiol. 2 231–40 (2004)
I.R. Lauks, Microfabricated biosensors and microanalytical systems for blood analysis. Acc. of Chem. Res. 31, 317–324 (1998)
A.J. Tudos, G.A.J. Besselink, and R.B.M. Schasfoort, Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1, 83–95 (2001)
P. Belgrader, S. Young, B. Yuan, M. Primeau, L.A. Christel, F. Pourahmadi, and M.A. Northrup, A battery-powered notebook thermal cycler for rapid multiplex real-time PCR analysis. Anal. Chem. 73 286, 391 (2001)
C.T. Culbertson, Y. Tugnawat, A.R. Meyer, G.T. Roman, J.M. Ramsey, and S.R. Gonda, Microchip separations in reduced-gravity and hypergravity environments. Anal. Chem. 77, 7933–7940 (2005)
A.M. Skelley, J.R. Scherer, A.D. Aubrey, W.H. Grover, R.H.C. Ivester, P. Ehrenfreund, F.J. Grunthaner, J.L. Bada, and R.A. Mathies, Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars, Proc. Natl. Acad. Sci. 102, 1041–1046 (2005)
T. Akiyama, S. Gautsch, N.F. de Rooij, U. Staufer, P. Niedermann, L. Howald, D. Muller, A. Tonin, H.R. Hidber, W.T. Pike, and M.H. Hecht, Atomic force microscope for planetary applications. Sensor. Actuat. A-Phys. 91, 321–325 (2001)
WHO, The global burden of disease: 2004 update (World Health Organization, Geneva, 2008)
D.A. Hall, J. Ptacek, and M. Snyder, Protein microarray technology. Mech. Ageing Dev. 128, 161–167 (2007)
P. Madhivanan, K. Krupp, J. Hardin, C. Karat, J.D. Klausner, and A.L. Reingold, Simple and inexpensive point-of-care tests improve diagnosis of vaginal infections in resource constrained settings. Trop. Med. Int. Health 14, 703–708 (2009)
P. von Lode, Point-of-care immunotesting: Approaching the analytical performance of central laboratory methods. Clin. Biochem. 38, 591–606 (2005)
P.N. Floriano, N. Christodoulides, C.S. Miller, J.L. Ebersole, J. Spertus, B.G. Rose, D.F. Kinane, M.J. Novak, S. Steinhubl, S. Acosta, S. Mohanty, P. Dharshan, C.K. Yeh, S. Redding, W. Furmaga, and J.T. McDevitt, Use of Saliva-Based Nano-Biochip Tests for Acute Myocardial Infarction at the Point of Care: A Feasibility Study. Clin. Chem. 55, 1530–1538 (2009)
M. Radisic, R.K. Iyer, and S.K. Murthy, Micro- and nanotechnology in cell separation. Int. J. Nanomedicine 1, 3–14 (2006)
P. Sethu, M. Anahtar, L.L. Moldawer, R.G. Tompkins, and M. Toner, Continuous row microfluidic device for rapid erythrocyte lysis. Anal. Chem. 76, 6247–6253 (2004)
X. Chen, D.F. Cui, C.C. Liu, H. Li, and J. Chen, Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. Anal. Chim. Acta 584, 237–243 (2007)
A. Niemz, T.M. Ferguson, and D.S. Boyle, Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol. 29, 240–250 (2011)
R.D. Johnson, V.G. Gaualas, S. Daunert, and L.G. Bachas, Microfluidic ion-sensing devices. Anal. Chim. Acta 613, 20–30 (2008)
J. Moorthy and D.J. Beebe, A hydrogel readout for autonomous detection of ions in microchannels. Lab Chip 2, 76–80 (2002)
R.J. Meagher, A.V. Hatch, R.F. Renzi, and A.K. Singh, An integrated microfluidic platform for sensitive and rapid detection of biological toxins. Lab Chip 8 2046–53 (2008)
H. Parsa, C.D. Chin, P. Mongkolwisetwara, B.W. Lee, J.J. Wang, and S.K. Sia, Effect of volume- and time-based constraints on capture of analytes in microfluidic heterogeneous immunoassays. Lab Chip 8, 2062–2070 (2008)
S.K. Sia, V. Linder, B.A. Parviz, A. Siegel, and G.M. Whitesides, An integrated approach to a portable and low-cost immunoassay for resource-poor settings. Angew. Chem. Int. Ed. Engl. 43, 498–502 (2004)
C.D. Chin, T. Laksanasopin, Y.K. Cheung, D. Steinmiller, V. Linder, H. Parsa, J.J. Wang, H. Moore, R. Rouse, G. Umviligihozo, E. Karita, L. Mwamarangwe, S. Braunstein, J.V.D. Wijgert, R. Sahabo, J. Justman, W. El-Sadr, and S.K. Sia, Microfluidics-based diagnostics of infectious diseases in the developing world. Nat. Med. 17, 1015–1019 (2011)
T. Thorsen, S.J. Maerkl, and S.R. Quake, Microfluidic large-scale integration Science 298, 580–584 (2002)
M. Herrmann, E. Roy, T. Veres, and M. Tabrizian, Microfluidic ELISA on non-passivated PDMS chip using magnetic bead transfer inside dual networks of channels. Lab Chip 7, 1546–1552 (2007)
K.A. Addae-Mensah, Y.K. Cheung, V. Fekete, M.S. Rendely, and S.K. Sia, Actuation of elastomeric microvalves in point-of-care settings using handheld, battery-powered instrumentation. Lab Chip 10, 1618–1622 (2010)
D.B. Weibel, M. Kruithof, S. Potenta, S.K. Sia, A. Lee, and G.M. Whitesides, Torque-actuated valves for microfluidics Anal. Chem. 77 4726–4733 (2005)
J. Ziegler, M. Zimmermann, P. Hunziker, and E. Delamarche, High-performance immunoassays based on through-stencil patterned antibodies and capillary systems. Anal. Chem. 80, 1763–1769 (2008)
L. Gervais and E. Delamarche, Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip 9, 3330–3337 (2009)
J. Moorthy, G.A. Mensing, D. Kim, S. Mohanty, D.T. Eddington, W.H. Tepp, E.A. Johnson, and D.J. Beebe, Microfluidic tectonics platform: A colorimetric, disposable botulinum toxin enzyme-linked immunosorbent assay system. Electrophoresis 25, 1705–1713 (2004)
V. Linder, S.K. Sia, and G.M. Whitesides, Reagent-loaded cartridges for valveless and automated fluid delivery in microfluidic devices. Anal. Chem. 77, 64–71 (2005)
D. Juncker, H. Schmid, U. Drechsler, H. Wolf, M. Wolf, B. Michel, N. de Rooij, and E. Delamarche, “Autonomous microfluidic capillary system, Anal. Chem. 74 6139–6144 (2002)
K.Y. Weng, N.J. Chou, and J.W. Cheng, Triggering vacuum capillaries for pneumatic pumping and metering liquids in point-of-care immunoassays. Lab Chip 8, 1216–1219 (2008)
C.M. Cheng, A. W. Martinez, J. Gong, C.R. Mace, S.T. Phillips, E. Carrilho, K.A. Mirica, and G.M. Whitesides, Paper-based ELISA. Angew. Chem. Int. Ed. Engl. 49, 4771–4774 (2010)
A.E. Herr, A.V. Hatch, D.J. Throckmorton, H.M. Tran, J.S. Brennan, W.V. Giannobile, and A.K. Singh, Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proc. Natl. Acad. Sci. U. S. A. 104, 5268–5273 (2007)
B.S. Lee, Y.U. Lee, H.S. Kim, T.H. Kim, J. Park, J.G. Lee, J. Kim, H. Kim, W.G. Lee, and Y.K. Cho, Fully integrated lab-on-a-disc for simultaneous analysis of biochemistry and immunoassay from whole blood. Lab Chip 11, 70–78 (2011)
H. Tsutsui and C.M. Ho, Cell separation by non-inertial force fields in microfluidic systems. Mech. Res. Commun. 36, 92–103 (2009)
V. VanDelinder and A. Groisman, Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device. Anal. Chem. 78, 3765–3771 (2006)
N.N. Ma, K.W. Koelling, and J.J. Chalmers, Fabrication and use of a transient contractional flow device to quantify the sensitivity of mammalian and insect cells to hydrodynamic forces. Biotechnol. Bioeng. 80, 428–437 (2002)
I. Doh and Y.H. Cho, A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sensor. Actuat. A-Phys. 121, 59–65 (2005)
M.M. Wang, E. Tu, D.E. Raymond, J.M. Yang, H.C. Zhang, N. Hagen, B. Dees, E.M. Mercer, A.H. Forster, I. Kariv, P.J. Marchand, and W.F. Butler, Microfluidic sorting of mammalian cells by optical force switching. Nat. Biotechnol. 23, 83–87 (2005)
Y. Sai, M. Yamada, M. Yasuda, and M. Seki, Continuous separation of particles using a microfluidic device equipped with flow rate control valves. J. Chromatogr. A 1127, 214–220 (2006)
F. Petersson, L. Aberg, A.M. Sward-Nilsson, and T. Laurell, Free flow acoustophoresis: Microfluidic-based mode of particle and cell separation. Anal. Chem. 79 5117–5123 (2007)
X.H. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R.G. Tompkins, W. Rodriguez, and M. Toner, A microfluidic device for practical label-free CD4+T cell counting of HIV-infected subjects. Lab Chip 7, 170–178 (2007)
A. Osei-Bimpong, C. Jury, R. McLean, and S.M. Lewis, Point-of-care method for total white cell count: an evaluation of the HemoCue WBC device. Int. J. Lab. Hematol. 31, 657–664 (2009)
L.V. Rao, B.A. Ekberg, D. Connor, F. Jakubiak, G.M. Vallaro, and M. Snyder, “Evaluation of a new point of care automated complete blood count (CBC) analyzer in various clinical settings. Clin. Chim. Acta. 389, 120–125 (2008)
X. Cheng, Y.S. Liu, D. Irimia, U. Demirci, L. Yang, L. Zamir, W.R. Rodriguez, M. Toner, and R. Bashir, Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices. Lab Chip 7, 746–755 (2007)
J.V. Jokerst, P.N. Floriano, N. Christodoulides, G.W. Simmons, and J.T. McDevitt, Integration of semiconductor quantum dots into nano-bio-chip systems for enumeration of CD4 + T cell counts at the point-of-need. Lab Chip 8, 2079–2090 (2008)
D. Schafer, E.A. Gibson, E.A. Salim, A.E. Palmer, R. Jimenez, and J. Squier, Microfluidic cell counter with embedded optical fibers fabricated by femtosecond laser ablation and anodic bonding. Opt. Express 17, 6068–6073 (2009)
S. Mtapuri-Zinyowera, M. Chideme, D. Mangwanya, O. Mugurungi, S. Gudukeya, K. Hatzold, A. Mangwiro, G. Bhattacharya, J. Lehe, and T. Peter, Evaluation of the PIMA point-of-care CD4 analyzer in VCT clinics in Zimbabwe. J. Acquir. Immune. Defic. Syndr. 55, 1–7 (2010)
Z. Wang, S.Y. Chin, C.D. Chin, J. Sarik, M. Harper, J. Justman, and S.K. Sia, Microfluidic CD4 + T-cell counting device using chemiluminescence-based detection. Anal. Chem. 82, 36–40 (2010)
T.M. Lee and I.M. Hsing, DNA-based bioanalytical microsystems for handheld device applications. Anal. Chim. Acta. 556, 26–37 (2006)
M.A. Dineva, L. MahiLum-Tapay, and H. Lee, Sample preparation: a challenge in the development of point-of-care nucleic acid-based assays for resource-limited settings. Analyst 132, 1193–1199 (2007)
L. Chen, A. Manz, and P.J. Day, Total nucleic acid analysis integrated on microfluidic devices. Lab Chip 7, 1413–1423 (2007)
F.M. Ausubel et al., Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology (Wiley, New York, 1992)
C. Lui, N.C. Cady, and C.A. Batt, Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems. Sensors 9, 3713–3744 (2009)
A.G. Crevillen, M. Hervas, M.A. Lopez, M.C. Gonzalez, and A. Escarpa, Real sample analysis on microfluidic devices. Talanta 74, 342–357 (2007)
J.S. Marcus, W.F. Anderson, and S.R. Quake, Microfluidic single-cell mRNA isolation and analysis. Anal. Chem. 78, 3084–3089 (2006)
L.A. Christel, K. Petersen, W. McMillan, and M.A. Northrup, Rapid, automated nucleic acid probe assays using silicon microstructures for nucleic acid concentration. J. Biomech. Eng-Trans. ASME 121, 22–27 (1999)
WHO, Roadmap for rolling out Xpert MTB/RIF for rapid diagnosis of TB and MDR-TB (World Health Organization, Geneva, 2010). 6 Dec 2010
C.C. Boehme, P. Nabeta, D. Hillemann, M.P. Nicol, S. Shenai, F. Krapp, J. Allen, R. Tahirli, R. Blakemore, R. Rustomjee, A. Milovic, M. Jones, S.M. O’Brien, D.H. Persing, S. Ruesch-Gerdes, E. Gotuzzo, C. Rodrigues, D. Alland, and M.D. Perkins, Rapid molecular detection of tuberculosis and rifampin resistance. N. Engl. J. Med. 363, 1005–1015 (2010)
C.S. Zhang, J.L. Xu, W.L. Ma, and W.L. Zheng, PCR microfluidic devices for DNA amplification. Biotechnol. Adv. 24, 243–284 (2006)
N.C. Cady, S. Stelick, M.V. Kunnavakkam, and C.A. Batt, Real-time PCR detection of Listeria monocytogenes using an integrated microfluidics platform. Sensor. Actuat. B-Chem. 107, 332–341 (2005)
D. Braun, PCR by thermal convection. Mod. Phys. Lett. B 18, 775–784 (2004)
D.S. Lee, S.H. Park, H.S. Yang, K.H. Chung, T.H. Yoon, S.J. Kim, K. Kim, and Y.T. Kim, Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption. Lab Chip 4, 401–407 (2004)
J. Van Ness, L.K. Van Ness, and D.J. Galas, Isothermal reactions for the amplification of oligonucleotides. Proc. Natl. Acad. Sci. U. S. A. 100, 4504–4509 (2003)
T.A. Taton, C.A. Mirkin, and R.L. Letsinger, Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 (2000)
E. Schleicher, The clinical chemistry laboratory: current status, problems and diagnostic prospects. Anal. Bioanal. Chem. 384, 124–131 (2006)
F.B. Myers and L.P. Lee, Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 8, 2015–2031 (2008)
A.W. Martinez, S.T. Phillips, M.J. Butte, G.M. Whitesides, Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 46, 1318–1320 (2007)
A.W. Martinez, S.T. Phillips, G.M. Whitesides, Three-dimensional microfluidic devices fabricated in layered paper and tape, Proc. Natl. Acad. Sci. 105, 19606–19611 (2008).
G.J. Kost, Principles and Practice of Point-of-Care Testing: (LWW, Philadelphia, 2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Chin, C.D., Chin, S.Y., Laksanasopin, T., Sia, S.K. (2013). Low-Cost Microdevices for Point-of-Care Testing. In: Issadore, D., Westervelt, R. (eds) Point-of-Care Diagnostics on a Chip. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29268-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-29268-2_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-29267-5
Online ISBN: 978-3-642-29268-2
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)