Skip to main content

Low-Cost Microdevices for Point-of-Care Testing

  • Chapter
  • First Online:
Point-of-Care Diagnostics on a Chip

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Microdevices enable clinical diagnostics to be miniaturized for use at the point-of-care (POC). Microdevices can be composed of microfilters, microchannels, microarrays, micropumps, microvalves, and microelectronics, and these mechanical and electrical components can be integrated onto chips to analyze and control biological objects at the microscale. The miniaturization of diagnostic tests offers many advantages over centralized laboratory testing, such as small reagent volumes, rapid analysis, small size, low power consumption, parallel analysis, and functional integration of multiple devices. Here, we review work on the development of microdevices to diagnose disease at POC settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P.N. Floriano, Microchip-based assay systems: methods and applications: (Humana Press, Totowa, 2007)

    Book  Google Scholar 

  2. L.J. Kricka, Microchips, microarrays, biochips and nanochips: personal laboratories for the 21st century, Clin. Chim. Acta 307, 219–223 (2001).

    Article  Google Scholar 

  3. J. Lii, W. Hsu, W. Lee and S.K. Sia, Microfluidics, in Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, New York, 2006)

    Google Scholar 

  4. P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M.R. Tam, and B.H. Weigl, Microfluidic diagnostic technologies for global public health. Nature 442, 412–418 (2006)

    Article  ADS  Google Scholar 

  5. C.D. Chin, V. Linder, and S.K. Sia, Lab-on-a-chip devices for global health: Past studies and future opportunities. Lab on a Chip 7, 41–57 (2007)

    Article  Google Scholar 

  6. P. Yager, G.J. Domingo, and J. Gerdes, Point-of-care diagnostics for global health. Annu. Rev. Biomed. Eng. 10, 107–144 (2008)

    Article  Google Scholar 

  7. S.K. Sia and L.J. Kricka, Microfluidics and point-of-care testing. Lab Chip 8, 1982–1983 (2008)

    Article  Google Scholar 

  8. G.M. Whitesides, The origins and the future of microfluidics. Nature 442, 368–373 (2006)

    Article  ADS  Google Scholar 

  9. J.B. Angell, S.C. Terry, and P.W. Barth, Silicon Micromechanical Devices. Sci. Am. 248, 44-55 (1983)

    Google Scholar 

  10. D. Mabey, R.W. Peeling, A. Ustianowski, and M.D. Perkins, Diagnostics for the developing world. Nat. Rev. Microbiol. 2 231–40 (2004)

    Article  Google Scholar 

  11. I.R. Lauks, Microfabricated biosensors and microanalytical systems for blood analysis. Acc. of Chem. Res. 31, 317–324 (1998)

    Article  Google Scholar 

  12. A.J. Tudos, G.A.J. Besselink, and R.B.M. Schasfoort, Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1, 83–95 (2001)

    Article  Google Scholar 

  13. P. Belgrader, S. Young, B. Yuan, M. Primeau, L.A. Christel, F. Pourahmadi, and M.A. Northrup, A battery-powered notebook thermal cycler for rapid multiplex real-time PCR analysis. Anal. Chem. 73 286, 391 (2001)

    Google Scholar 

  14. C.T. Culbertson, Y. Tugnawat, A.R. Meyer, G.T. Roman, J.M. Ramsey, and S.R. Gonda, Microchip separations in reduced-gravity and hypergravity environments. Anal. Chem. 77, 7933–7940 (2005)

    Article  Google Scholar 

  15. A.M. Skelley, J.R. Scherer, A.D. Aubrey, W.H. Grover, R.H.C. Ivester, P. Ehrenfreund, F.J. Grunthaner, J.L. Bada, and R.A. Mathies, Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars, Proc. Natl. Acad. Sci. 102, 1041–1046 (2005)

    Article  ADS  Google Scholar 

  16. T. Akiyama, S. Gautsch, N.F. de Rooij, U. Staufer, P. Niedermann, L. Howald, D. Muller, A. Tonin, H.R. Hidber, W.T. Pike, and M.H. Hecht, Atomic force microscope for planetary applications. Sensor. Actuat. A-Phys. 91, 321–325 (2001)

    Article  Google Scholar 

  17. WHO, The global burden of disease: 2004 update (World Health Organization, Geneva, 2008)

    Google Scholar 

  18. D.A. Hall, J. Ptacek, and M. Snyder, Protein microarray technology. Mech. Ageing Dev. 128, 161–167 (2007)

    Article  Google Scholar 

  19. P. Madhivanan, K. Krupp, J. Hardin, C. Karat, J.D. Klausner, and A.L. Reingold, Simple and inexpensive point-of-care tests improve diagnosis of vaginal infections in resource constrained settings. Trop. Med. Int. Health 14, 703–708 (2009)

    Article  Google Scholar 

  20. P. von Lode, Point-of-care immunotesting: Approaching the analytical performance of central laboratory methods. Clin. Biochem. 38, 591–606 (2005)

    Article  Google Scholar 

  21. P.N. Floriano, N. Christodoulides, C.S. Miller, J.L. Ebersole, J. Spertus, B.G. Rose, D.F. Kinane, M.J. Novak, S. Steinhubl, S. Acosta, S. Mohanty, P. Dharshan, C.K. Yeh, S. Redding, W. Furmaga, and J.T. McDevitt, Use of Saliva-Based Nano-Biochip Tests for Acute Myocardial Infarction at the Point of Care: A Feasibility Study. Clin. Chem. 55, 1530–1538 (2009)

    Article  Google Scholar 

  22. M. Radisic, R.K. Iyer, and S.K. Murthy, Micro- and nanotechnology in cell separation. Int. J. Nanomedicine 1, 3–14 (2006)

    Article  Google Scholar 

  23. P. Sethu, M. Anahtar, L.L. Moldawer, R.G. Tompkins, and M. Toner, Continuous row microfluidic device for rapid erythrocyte lysis. Anal. Chem. 76, 6247–6253 (2004)

    Article  Google Scholar 

  24. X. Chen, D.F. Cui, C.C. Liu, H. Li, and J. Chen, Continuous flow microfluidic device for cell separation, cell lysis and DNA purification. Anal. Chim. Acta 584, 237–243 (2007)

    Article  Google Scholar 

  25. A. Niemz, T.M. Ferguson, and D.S. Boyle, Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol. 29, 240–250 (2011)

    Article  Google Scholar 

  26. R.D. Johnson, V.G. Gaualas, S. Daunert, and L.G. Bachas, Microfluidic ion-sensing devices. Anal. Chim. Acta 613, 20–30 (2008)

    Article  Google Scholar 

  27. J. Moorthy and D.J. Beebe, A hydrogel readout for autonomous detection of ions in microchannels. Lab Chip 2, 76–80 (2002)

    Article  Google Scholar 

  28. R.J. Meagher, A.V. Hatch, R.F. Renzi, and A.K. Singh, An integrated microfluidic platform for sensitive and rapid detection of biological toxins. Lab Chip 8 2046–53 (2008)

    Article  Google Scholar 

  29. H. Parsa, C.D. Chin, P. Mongkolwisetwara, B.W. Lee, J.J. Wang, and S.K. Sia, Effect of volume- and time-based constraints on capture of analytes in microfluidic heterogeneous immunoassays. Lab Chip 8, 2062–2070 (2008)

    Article  Google Scholar 

  30. S.K. Sia, V. Linder, B.A. Parviz, A. Siegel, and G.M. Whitesides, An integrated approach to a portable and low-cost immunoassay for resource-poor settings. Angew. Chem. Int. Ed. Engl. 43, 498–502 (2004)

    Article  Google Scholar 

  31. C.D. Chin, T. Laksanasopin, Y.K. Cheung, D. Steinmiller, V. Linder, H. Parsa, J.J. Wang, H. Moore, R. Rouse, G. Umviligihozo, E. Karita, L. Mwamarangwe, S. Braunstein, J.V.D. Wijgert, R. Sahabo, J. Justman, W. El-Sadr, and S.K. Sia, Microfluidics-based diagnostics of infectious diseases in the developing world. Nat. Med. 17, 1015–1019 (2011)

    Article  Google Scholar 

  32. T. Thorsen, S.J. Maerkl, and S.R. Quake, Microfluidic large-scale integration Science 298, 580–584 (2002)

    Google Scholar 

  33. M. Herrmann, E. Roy, T. Veres, and M. Tabrizian, Microfluidic ELISA on non-passivated PDMS chip using magnetic bead transfer inside dual networks of channels. Lab Chip 7, 1546–1552 (2007)

    Article  Google Scholar 

  34. K.A. Addae-Mensah, Y.K. Cheung, V. Fekete, M.S. Rendely, and S.K. Sia, Actuation of elastomeric microvalves in point-of-care settings using handheld, battery-powered instrumentation. Lab Chip 10, 1618–1622 (2010)

    Article  Google Scholar 

  35. D.B. Weibel, M. Kruithof, S. Potenta, S.K. Sia, A. Lee, and G.M. Whitesides, Torque-actuated valves for microfluidics Anal. Chem. 77 4726–4733 (2005)

    Google Scholar 

  36. J. Ziegler, M. Zimmermann, P. Hunziker, and E. Delamarche, High-performance immunoassays based on through-stencil patterned antibodies and capillary systems. Anal. Chem. 80, 1763–1769 (2008)

    Article  Google Scholar 

  37. L. Gervais and E. Delamarche, Toward one-step point-of-care immunodiagnostics using capillary-driven microfluidics and PDMS substrates. Lab Chip 9, 3330–3337 (2009)

    Article  Google Scholar 

  38. J. Moorthy, G.A. Mensing, D. Kim, S. Mohanty, D.T. Eddington, W.H. Tepp, E.A. Johnson, and D.J. Beebe, Microfluidic tectonics platform: A colorimetric, disposable botulinum toxin enzyme-linked immunosorbent assay system. Electrophoresis 25, 1705–1713 (2004)

    Article  Google Scholar 

  39. V. Linder, S.K. Sia, and G.M. Whitesides, Reagent-loaded cartridges for valveless and automated fluid delivery in microfluidic devices. Anal. Chem. 77, 64–71 (2005)

    Article  Google Scholar 

  40. D. Juncker, H. Schmid, U. Drechsler, H. Wolf, M. Wolf, B. Michel, N. de Rooij, and E. Delamarche, “Autonomous microfluidic capillary system, Anal. Chem. 74 6139–6144 (2002)

    Article  Google Scholar 

  41. K.Y. Weng, N.J. Chou, and J.W. Cheng, Triggering vacuum capillaries for pneumatic pumping and metering liquids in point-of-care immunoassays. Lab Chip 8, 1216–1219 (2008)

    Article  Google Scholar 

  42. C.M. Cheng, A. W. Martinez, J. Gong, C.R. Mace, S.T. Phillips, E. Carrilho, K.A. Mirica, and G.M. Whitesides, Paper-based ELISA. Angew. Chem. Int. Ed. Engl. 49, 4771–4774 (2010)

    Article  Google Scholar 

  43. A.E. Herr, A.V. Hatch, D.J. Throckmorton, H.M. Tran, J.S. Brennan, W.V. Giannobile, and A.K. Singh, Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Proc. Natl. Acad. Sci. U. S. A. 104, 5268–5273 (2007)

    Article  ADS  Google Scholar 

  44. B.S. Lee, Y.U. Lee, H.S. Kim, T.H. Kim, J. Park, J.G. Lee, J. Kim, H. Kim, W.G. Lee, and Y.K. Cho, Fully integrated lab-on-a-disc for simultaneous analysis of biochemistry and immunoassay from whole blood. Lab Chip 11, 70–78 (2011)

    Article  Google Scholar 

  45. H. Tsutsui and C.M. Ho, Cell separation by non-inertial force fields in microfluidic systems. Mech. Res. Commun. 36, 92–103 (2009)

    Article  Google Scholar 

  46. V. VanDelinder and A. Groisman, Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device. Anal. Chem. 78, 3765–3771 (2006)

    Article  Google Scholar 

  47. N.N. Ma, K.W. Koelling, and J.J. Chalmers, Fabrication and use of a transient contractional flow device to quantify the sensitivity of mammalian and insect cells to hydrodynamic forces. Biotechnol. Bioeng. 80, 428–437 (2002)

    Article  Google Scholar 

  48. I. Doh and Y.H. Cho, A continuous cell separation chip using hydrodynamic dielectrophoresis (DEP) process. Sensor. Actuat. A-Phys. 121, 59–65 (2005)

    Article  Google Scholar 

  49. M.M. Wang, E. Tu, D.E. Raymond, J.M. Yang, H.C. Zhang, N. Hagen, B. Dees, E.M. Mercer, A.H. Forster, I. Kariv, P.J. Marchand, and W.F. Butler, Microfluidic sorting of mammalian cells by optical force switching. Nat. Biotechnol. 23, 83–87 (2005)

    Article  Google Scholar 

  50. Y. Sai, M. Yamada, M. Yasuda, and M. Seki, Continuous separation of particles using a microfluidic device equipped with flow rate control valves. J. Chromatogr. A 1127, 214–220 (2006)

    Article  Google Scholar 

  51. F. Petersson, L. Aberg, A.M. Sward-Nilsson, and T. Laurell, Free flow acoustophoresis: Microfluidic-based mode of particle and cell separation. Anal. Chem. 79 5117–5123 (2007)

    Article  Google Scholar 

  52. X.H. Cheng, D. Irimia, M. Dixon, K. Sekine, U. Demirci, L. Zamir, R.G. Tompkins, W. Rodriguez, and M. Toner, A microfluidic device for practical label-free CD4+T cell counting of HIV-infected subjects. Lab Chip 7, 170–178 (2007)

    Article  Google Scholar 

  53. A. Osei-Bimpong, C. Jury, R. McLean, and S.M. Lewis, Point-of-care method for total white cell count: an evaluation of the HemoCue WBC device. Int. J. Lab. Hematol. 31, 657–664 (2009)

    Article  Google Scholar 

  54. L.V. Rao, B.A. Ekberg, D. Connor, F. Jakubiak, G.M. Vallaro, and M. Snyder, “Evaluation of a new point of care automated complete blood count (CBC) analyzer in various clinical settings. Clin. Chim. Acta. 389, 120–125 (2008)

    Article  Google Scholar 

  55. X. Cheng, Y.S. Liu, D. Irimia, U. Demirci, L. Yang, L. Zamir, W.R. Rodriguez, M. Toner, and R. Bashir, Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices. Lab Chip 7, 746–755 (2007)

    Article  Google Scholar 

  56. J.V. Jokerst, P.N. Floriano, N. Christodoulides, G.W. Simmons, and J.T. McDevitt, Integration of semiconductor quantum dots into nano-bio-chip systems for enumeration of CD4 + T cell counts at the point-of-need. Lab Chip 8, 2079–2090 (2008)

    Article  Google Scholar 

  57. D. Schafer, E.A. Gibson, E.A. Salim, A.E. Palmer, R. Jimenez, and J. Squier, Microfluidic cell counter with embedded optical fibers fabricated by femtosecond laser ablation and anodic bonding. Opt. Express 17, 6068–6073 (2009)

    Article  ADS  Google Scholar 

  58. S. Mtapuri-Zinyowera, M. Chideme, D. Mangwanya, O. Mugurungi, S. Gudukeya, K. Hatzold, A. Mangwiro, G. Bhattacharya, J. Lehe, and T. Peter, Evaluation of the PIMA point-of-care CD4 analyzer in VCT clinics in Zimbabwe. J. Acquir. Immune. Defic. Syndr. 55, 1–7 (2010)

    Article  Google Scholar 

  59. Z. Wang, S.Y. Chin, C.D. Chin, J. Sarik, M. Harper, J. Justman, and S.K. Sia, Microfluidic CD4 + T-cell counting device using chemiluminescence-based detection. Anal. Chem. 82, 36–40 (2010)

    Article  Google Scholar 

  60. T.M. Lee and I.M. Hsing, DNA-based bioanalytical microsystems for handheld device applications. Anal. Chim. Acta. 556, 26–37 (2006)

    Article  Google Scholar 

  61. M.A. Dineva, L. MahiLum-Tapay, and H. Lee, Sample preparation: a challenge in the development of point-of-care nucleic acid-based assays for resource-limited settings. Analyst 132, 1193–1199 (2007)

    Article  ADS  Google Scholar 

  62. L. Chen, A. Manz, and P.J. Day, Total nucleic acid analysis integrated on microfluidic devices. Lab Chip 7, 1413–1423 (2007)

    Article  Google Scholar 

  63. F.M. Ausubel et al., Short Protocols in Molecular Biology: A Compendium of Methods from Current Protocols in Molecular Biology (Wiley, New York, 1992)

    Google Scholar 

  64. C. Lui, N.C. Cady, and C.A. Batt, Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems. Sensors 9, 3713–3744 (2009)

    Article  Google Scholar 

  65. A.G. Crevillen, M. Hervas, M.A. Lopez, M.C. Gonzalez, and A. Escarpa, Real sample analysis on microfluidic devices. Talanta 74, 342–357 (2007)

    Article  Google Scholar 

  66. J.S. Marcus, W.F. Anderson, and S.R. Quake, Microfluidic single-cell mRNA isolation and analysis. Anal. Chem. 78, 3084–3089 (2006)

    Article  Google Scholar 

  67. L.A. Christel, K. Petersen, W. McMillan, and M.A. Northrup, Rapid, automated nucleic acid probe assays using silicon microstructures for nucleic acid concentration. J. Biomech. Eng-Trans. ASME 121, 22–27 (1999)

    Article  Google Scholar 

  68. WHO, Roadmap for rolling out Xpert MTB/RIF for rapid diagnosis of TB and MDR-TB (World Health Organization, Geneva, 2010). 6 Dec 2010

    Google Scholar 

  69. C.C. Boehme, P. Nabeta, D. Hillemann, M.P. Nicol, S. Shenai, F. Krapp, J. Allen, R. Tahirli, R. Blakemore, R. Rustomjee, A. Milovic, M. Jones, S.M. O’Brien, D.H. Persing, S. Ruesch-Gerdes, E. Gotuzzo, C. Rodrigues, D. Alland, and M.D. Perkins, Rapid molecular detection of tuberculosis and rifampin resistance. N. Engl. J. Med. 363, 1005–1015 (2010)

    Article  Google Scholar 

  70. C.S. Zhang, J.L. Xu, W.L. Ma, and W.L. Zheng, PCR microfluidic devices for DNA amplification. Biotechnol. Adv. 24, 243–284 (2006)

    Article  Google Scholar 

  71. N.C. Cady, S. Stelick, M.V. Kunnavakkam, and C.A. Batt, Real-time PCR detection of Listeria monocytogenes using an integrated microfluidics platform. Sensor. Actuat. B-Chem. 107, 332–341 (2005)

    Article  Google Scholar 

  72. D. Braun, PCR by thermal convection. Mod. Phys. Lett. B 18, 775–784 (2004)

    Article  ADS  Google Scholar 

  73. D.S. Lee, S.H. Park, H.S. Yang, K.H. Chung, T.H. Yoon, S.J. Kim, K. Kim, and Y.T. Kim, Bulk-micromachined submicroliter-volume PCR chip with very rapid thermal response and low power consumption. Lab Chip 4, 401–407 (2004)

    Article  Google Scholar 

  74. J. Van Ness, L.K. Van Ness, and D.J. Galas, Isothermal reactions for the amplification of oligonucleotides. Proc. Natl. Acad. Sci. U. S. A. 100, 4504–4509 (2003)

    Article  ADS  Google Scholar 

  75. T.A. Taton, C.A. Mirkin, and R.L. Letsinger, Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 (2000)

    Article  ADS  Google Scholar 

  76. E. Schleicher, The clinical chemistry laboratory: current status, problems and diagnostic prospects. Anal. Bioanal. Chem. 384, 124–131 (2006)

    Article  Google Scholar 

  77. F.B. Myers and L.P. Lee, Innovations in optical microfluidic technologies for point-of-care diagnostics. Lab Chip 8, 2015–2031 (2008)

    Article  Google Scholar 

  78. A.W. Martinez, S.T. Phillips, M.J. Butte, G.M. Whitesides, Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 46, 1318–1320 (2007)

    Article  Google Scholar 

  79. A.W. Martinez, S.T. Phillips, G.M. Whitesides, Three-dimensional microfluidic devices fabricated in layered paper and tape, Proc. Natl. Acad. Sci. 105, 19606–19611 (2008).

    Article  ADS  Google Scholar 

  80. G.J. Kost, Principles and Practice of Point-of-Care Testing: (LWW, Philadelphia, 2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel K. Sia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chin, C.D., Chin, S.Y., Laksanasopin, T., Sia, S.K. (2013). Low-Cost Microdevices for Point-of-Care Testing. In: Issadore, D., Westervelt, R. (eds) Point-of-Care Diagnostics on a Chip. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29268-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-29268-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-29267-5

  • Online ISBN: 978-3-642-29268-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics