Electrochemical-Surface Plasmon Resonance: Concept and Bioanalytical Applications

  • Danielle C. Melo Ferreira
  • Renata Kelly Mendes
  • Lauro Tatsuo Kubota
Chapter

Abstract

The combination of surface plasmon resonance (SPR) and electrochemical methods has become a powerful technique for simultaneous observation of optical and electrochemical properties at substrate/electrolyte interfaces. The fundamental aspects of the electric potential effects on surface plasmons are introduced and the use and applications of this combined electrochemical and optical technique are discussed. Electrochemical-Surface Plasmon Resonance (ESPR) has several advantages, such as: spatial resolution, which is particularly attractive for studying heterogeneous reactions; optical properties of reactive species that may assist identification action mechanisms, and high surface sensitivity for studying surface binding of the reaction species. The electrochemistry-SPR spectroscopy technique has also been used for many applications, including bio-analytical systems that will be further described in more detail.

Keywords

Surface Plasmon Resonance Molecularly Imprint Polymer Surface Plasmon Resonance Imaging Surface Plasmon Resonance Biosensor Surface Plasmon Resonance Chip 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Situ, C., Buijs, J., Mooney, M.H., Elliott, C.T.: Trends Anal. Chem. 29, 1305 (2010)CrossRefGoogle Scholar
  2. 2.
    Wang, J., Munir, A., Li, Z., Zhou, H.S.: Biosens. Bioelectron. 25, 124 (2009)CrossRefGoogle Scholar
  3. 3.
    Mouri, R., Oishi, T., Torikai, K., Ujihara, S., Matsumori, N., Murata, M., Oshima, Y.: Bioorg. Med. Chem. Lett. 19, 2824 (2009)CrossRefGoogle Scholar
  4. 4.
    Wang, Q., Tang, H., Xie, Q., Jia, X., Zhang, Y., Tan, L., Yao, S.: Colloids Surf. B 63, 254 (2008)CrossRefGoogle Scholar
  5. 5.
    Bart, M., van Os, P.J.H.J., Kamp, B., Bult, A., Bennekom, W.P.: Sens. Actuators B. 84, 129 (2002)CrossRefGoogle Scholar
  6. 6.
    Szunerits, S., Rich, S.A., Coffinier, Y., Languille, M.A., Supiot, P., Boukherroub, R.: Electrochim. Acta 53, 3910 (2008)CrossRefGoogle Scholar
  7. 7.
    Wang, Y., Knoll, W.: Anal. Chim. Acta 558, 150 (2006)CrossRefGoogle Scholar
  8. 8.
    Schasfoort, R.B.M., Tudos, A.J. (eds.): Introduction to surface plasmon. In: Resonance Handbook of Surface Plasmon Resonance. The Royal Society of Chemistry, Cambridge (2008)Google Scholar
  9. 9.
    Englebienne, P. Hoonacker, A.V., Verhas, M.: Spectroscopy 17, 255 (2003)Google Scholar
  10. 10.
    Homola, J., Yee, S.S., Gauglitz, G.: Sens. Actuators B. 54, 3 (1999)CrossRefGoogle Scholar
  11. 11.
    Kretschmann, E., Raether, H.Z.: Z. Naturforsch. 23A, 2135 (1968)Google Scholar
  12. 12.
    Otto, A. Z.: Physik. 216, 398 (1968)Google Scholar
  13. 13.
    Liedberg, B., Nylander, C., Lundstrom, I.: Biosens. Bioelectron. 10, 1 (1995)CrossRefGoogle Scholar
  14. 14.
    Raether, H.: Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, Berlin (1988)Google Scholar
  15. 15.
    Stegeman, G.I., Burke, J.J., Hall, D.G.: Opt. Lett. 8, 383 (1983)CrossRefGoogle Scholar
  16. 16.
    Burke, J.J., Stegeman, G.I., Tamir, T.: Phys. Rev. B. 33, 5186 (1986)CrossRefGoogle Scholar
  17. 17.
    Sarid, D.: Phys. Rev. Lett. 47, 1927 (1981)CrossRefGoogle Scholar
  18. 18.
    Nguyen, B., Tanious, F.A., Wilson, W.D.: Methods 42, 150 (2007)CrossRefGoogle Scholar
  19. 19.
    Day, Y.S.N., Baird, C.L., Rich, R.L., Myszka, D.G.: Protein Sci. 11, 1017 (2002)CrossRefGoogle Scholar
  20. 20.
    Peterlinz, K.A., Georgiadis, R.: Langmuir 12, 4731 (1996)CrossRefGoogle Scholar
  21. 21.
    Lackmann, M., Bucci, T., Mann, R.J., Kravets, L.A., Viney, E., Smith, F., Moritz, R.L., Carter, W., Simpson, R.J., Nicola, N.A.: Proc. Natl. Acad. Sci. U S A 93, 2523 (1996)CrossRefGoogle Scholar
  22. 22.
    Myszka, D.G.J.: Mol. Recognit. 12, 390 (1999)CrossRefGoogle Scholar
  23. 23.
    Rich, R.L., Myszka, D.G.: Curr. Opin. Biotech. 11, 54 (2000)CrossRefGoogle Scholar
  24. 24.
    Markgren, P.-O., Hämäläinen, M., Danielson, U.: Anal. Biochem. 265, 340 (1999)CrossRefGoogle Scholar
  25. 25.
    Morton, T.A., Myszka, D.G.: Methods Enzymol. 295, 268 (1998)CrossRefGoogle Scholar
  26. 26.
    Myszka, D.G., Jonsen, M.D., Graves, B.J.: Anal. Biochem. 265, 326 (1998)CrossRefGoogle Scholar
  27. 27.
    Matsubara, K., Kawata, S., Minami, S.: Appl. Spectrosc. 42, 1375 (1988)CrossRefGoogle Scholar
  28. 28.
    Zhang, L.M., Uttamchandan, D.: Electron. Lett. 24, 1469 (1988)CrossRefGoogle Scholar
  29. 29.
    Brockman, J.M., Nelson, B.P., Corn, R.M.: Annu. Rev. Phys. Chem. 51, 41 (2000)CrossRefGoogle Scholar
  30. 30.
    Mello, L.D., Ferreira, D.C.M., Kubota, L.T.: Enzymes as analytical tools in food processing. In: Enzymes in Food Processing: Fundamentals and Potential Applications. I K International Publishing House, New Delhi (2010)Google Scholar
  31. 31.
    Ferreira, D.C.M., Mello, L.D, Mendes, R.K., Kubota, L.T.: Biosensors for fruit and vegetable processing. In: Enzymes in Fruit and Vegetable Processing Chemistry and Engineering Applications. CRC Press, Boca Raton (2010)Google Scholar
  32. 32.
    Homola, J.: Chem. Rev. 108, 462 (2008)CrossRefGoogle Scholar
  33. 33.
    Arwin, H., Poksinski, M., Johansen, K.: Appl. Opt. 43, 3028 (2004)CrossRefGoogle Scholar
  34. 34.
    Elwing, H.: Biomaterials 19, 397 (1998)CrossRefGoogle Scholar
  35. 35.
    Goodall, D.G., Stevens, G.W., Beaglehole, D., Gee, M.L.: Langmuir 15, 4579 (1999)CrossRefGoogle Scholar
  36. 36.
    Eggins, B.: Chemical sensors and biosensors. In: Analytical Techniques in the Sciences. Wiley, West Sussex (2002)Google Scholar
  37. 37.
    Chaubey, A., Malhotra, B.D.: Biosens. Bioelectron. 17, 441 (2002)CrossRefGoogle Scholar
  38. 38.
    D’Orazio, P.: Clin. Chim. Acta 334, 41 (2003)CrossRefGoogle Scholar
  39. 39.
    Baba, A., Lübben, J., Tamada, K., Knoll, W.: Langmuir 19, 9058 (2003)CrossRefGoogle Scholar
  40. 40.
    Xia, C., Advincula, R., Baba, A., Knoll, W.: Langmuir 18, 3555 (2002)CrossRefGoogle Scholar
  41. 41.
    Schweiss, R., Lübben, J.F., Johannsmann, D., Knoll, W.: Electrochim. Acta 50, 2849 (2005)CrossRefGoogle Scholar
  42. 42.
    Damos, F.S., Luz, R.C.S., Kubota, L.T.: Electrochim. Acta 51, 1304 (2006)CrossRefGoogle Scholar
  43. 43.
    Abanulo, C., Harris, R.D., Sheridan, A.K., Wilkinson, J.S., Bartlett, P.N.: Farad. Disc. 121, 139 (2002)CrossRefGoogle Scholar
  44. 44.
    Bradshaw, J.T., Mendes, S.B., Armstrong, N.R., Saavedra, S.S.: Anal. Chem. 75, 1080 (2003)CrossRefGoogle Scholar
  45. 45.
    Badia, A., Arnold, S., Scheumann, V., Zizlsperger, M., Mack, J., Jung, G., Knoll, W.: Sens. Actuators B. 54, 145 (1999)CrossRefGoogle Scholar
  46. 46.
    Lavers, C.R., Harris, R.D., Hao, S., Wilkinson, J.S., Odwyer, K., Brust, M., Schiffrin, D.J.J.: Electroanal. Chem. 387, 11 (1995)CrossRefGoogle Scholar
  47. 47.
    Willner, I., Katz, E.: Angew. Chem. Intl. Ed. 43, 6042 (2004)CrossRefGoogle Scholar
  48. 48.
    Baba, A., Knoll, W., Advincula, R.: Rev. Sci. Instrum. 77, 064101 (2006)CrossRefGoogle Scholar
  49. 49.
    Sriwichai, S., Baba, A., Deng, S.X., Huang, C.Y., Phanichphant, S., Advincula, R.C.: Langmuir 24, 9017 (2008)CrossRefGoogle Scholar
  50. 50.
    Knoll, W.: Annu. Rev. Phys. Chem. 49, 569 (1998)CrossRefGoogle Scholar
  51. 51.
    Baba, A., Park, M.K., Advincula, R.C., Knoll, W.: Langmuir 18, 4648 (2002)CrossRefGoogle Scholar
  52. 52.
    Gouzy, M.-F., Keß, M., Krämer, P.M.: Biosens. Bioelectron. 24, 1563 (2009)CrossRefGoogle Scholar
  53. 53.
    Gupta, G., Singh, P.K., Boopathi, M., Kamboj, D.V., Singh, B., Vijayaraghavan, R.: Thin Solid Films 519, 1115 (2010)CrossRefGoogle Scholar
  54. 54.
    Dong, H., Cao, X., Li, C.M., Hu, W.: Biosens. Bioelectron. 23, 1055 (2008)CrossRefGoogle Scholar
  55. 55.
    Sriwichai, S., Baba, A., Phanichphant, S., Shinbo, K., Kato, K.: Sens. Actuators B. 147, 322 (2010)CrossRefGoogle Scholar
  56. 56.
    Baba, A., Mannen, T., Ohdaira, Y., Shinbo, K., Kato, K., Kaneko, F., Fukuda, N., Ushijima, H.: Langmuir 26, 18476 (2010)CrossRefGoogle Scholar
  57. 57.
    Singh, N.K., Jain, B., Annapoorni, S.: Sens. Actuators B Chem. 156, 383 (2011)CrossRefGoogle Scholar
  58. 58.
    Xin, Y., Gao, Y., Guo, J., Chen, Q., Xiang, J., Zhou, F.: Biosens. Bioelectron. 24, 369 (2008)CrossRefGoogle Scholar
  59. 59.
    Xin, N., Xin, Y., Gao, Y., Xiang, J.: Microchim Acta (2011). doi: 10.1007/s00604-011-0598-z
  60. 60.
    Schlereth, D.D.J.: Electroanal. Chem. 464, 98 (1999)Google Scholar
  61. 61.
    Calvo, E.J., Forzani, E., Tero, M.J.: Electroanal. Chem. 231, 538 (2002)Google Scholar
  62. 62.
    Heaton, R.J., A.W., Peterson, Georgiadis, R.M.: PNAS 98, 3701 (2001)CrossRefGoogle Scholar
  63. 63.
    Iwasaki, Y., Tobita, T., Kurihara, K., Horiuchi, T., Suzuki, K., Niwa, O.: Biosens. Bioelectron. 17, 783 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Danielle C. Melo Ferreira
    • 1
  • Renata Kelly Mendes
    • 2
  • Lauro Tatsuo Kubota
    • 3
  1. 1.Laboratório de Microfabricação—Laboratório Nacional de NanotecnologiaCNPEMCampinasBrazil
  2. 2.Faculdade de QuímicaPontifícia Universidade Católica de CampinasCampinasBrazil
  3. 3.Instituto de QuímicaUniversidade Estadual de Campinas—UNICAMPCampinasBrazil

Personalised recommendations