Nanomaterials for Enzyme Biofuel Cells

  • Serge Cosnier
  • Alan Le Goff
  • Michael Holzinger


This book chapter describes the recent advances in the design of novel materials for enzymatic fuel cells. Energy conversion using biologic catalysts became a steady growing research field for supplying nomad or implantable devices due to the high specifity for the substrates and the high efficiency of redox enzymes. The constant issue, however, is the electric connection of the enzymatic redox centre to the electrode to obtain a high efficient biofuel cell. Among many advantages, nanotechnology have been offering exciting tools to achieve efficient interfacing between redox enzymes and electrical circuitry, while providing high active surfaces. We briefly introduce the principles that govern the production of electrical energy from biofuels using a biofuel cell. We focus our discussion on nanomaterials that have realized the efficient immobilization and wiring of enzymes, in particular carbon nanotubes, inorganic and polymer nanoparticles. We highlight the successfull use of these advanced materials in the engineering of enzyme electrodes and the design of novel miniaturized biofuel cell setups.


Layered Double Hydroxide Open Circuit Voltage Redox Mediator Direct Electron Transfer Maximum Power Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Barton, S.C., Gallaway, J., Atanassov, P.: Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 104(10), 4867–4886 (2004). doi: 10.1021/cr020719k CrossRefGoogle Scholar
  2. 2.
    Atanassov, P., Apblett, C., Banta, S., Brozik, S., Barton, S.C., Cooney, M., Liaw, B.Y., Sanjeev Mukerjee, Minteer, S.D.: Enzymatic biofuel cells. The Electrochemical Soc Interface 16(2), 28–31 (2007).Google Scholar
  3. 3.
    Cracknell, J.A., Vincent, K.A., Armstrong, F.A.: Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem. Rev. 108(7), 2439–2461 (2008). doi: 10.1021/cr0680639 CrossRefGoogle Scholar
  4. 4.
    Zayats, M., Willner, B., Willner, I.: Design of amperometric biosensors and biofuel cells by the reconstitution of electrically contacted enzyme electrodes. Electroanalysis 20(6), 583–601 (2008). doi: 10.1002/elan.200704128 CrossRefGoogle Scholar
  5. 5.
    Willner, I., Yan, Y.-M., Willner, B., Tel-Vered, R.: Integrated enzyme-based biofuel cells–a review. Fuel Cells 9(1), 7–24 (2009). doi: 10.1002/fuce.200800115 CrossRefGoogle Scholar
  6. 6.
    Nazaruk, E., Sadowska, K., Biernat, J., Rogalski, J., Ginalska, G., Bilewicz, R.: Enzymatic electrodes nanostructured with functionalized carbon nanotubes for biofuel cell applications. Anal. Bioanal. Chem. 398(4), 1651–1660 (2010). doi: 10.1007/s00216-010-4012-1 Google Scholar
  7. 7.
    Singh, P., Campidelli, S., Giordani, S., Bonifazi, D., Bianco, A., Prato, M.: Organic functionalisation and characterisation of single-walled carbon nanotubes Chem. Soc. Rev. 38, 2214–2230 (2009). doi: 10.1039/B518111A CrossRefGoogle Scholar
  8. 8.
    Le Goff, A., Moggia, F., Debou, N., Jegou, P., Artero, V., Fontecave, M., Jousselme, B., Palacin, S.: Facile and tunable functionalization of carbon nanotube electrodes with ferrocene by covalent coupling and π-stacking interactions and their relevance to glucose biosensing. J. Electroanal. Chem. 641(1–2), 57–63 (2010). doi: 10.1016/j.jelechem.2010.01.014 Google Scholar
  9. 9.
    Callegari, A., Cosnier, S., Marcaccio, M., Paolucci, D., Paolucci, F., Georgakilas, V., Tagmatarchis, N., Vázquez, E., Prato, M.: Functionalised single wall carbon nanotubes/polypyrrole composites for the preparation of amperometric glucose biosensors. J. Mater. Chem. 14, 807–810 (2004). doi: 10.1039/b316806a CrossRefGoogle Scholar
  10. 10.
    Gao, F., Viry, L., Maugey, M., Poulin, P., Mano, N.: Engineering hybrid nanotube wires for high-power biofuel cells. Nat Commun 1(1), 1–7 (2010)Google Scholar
  11. 11.
    Guiseppi-Elie, A., Lei, C.H., Baughman, R.H.: Direct electron transfer of glucose oxidase on carbon nanotubes. Nanotechnology 13(5), 559–564 (2002). doi: 10.1088/0957-4484/13/5/303 CrossRefGoogle Scholar
  12. 12.
    Liu, J., Chou, A., Rahmat, W., Paddon-Row, M.N., Gooding, J.J.: Achieving direct electrical connection to glucose oxidase using aligned single walled carbon nanotube arrays. Electroanalysis 17(1), 38–46 (2005). doi: 10.1002/elan.200403116 CrossRefGoogle Scholar
  13. 13.
    Patolsky, F., Weizmann, Y., Willner, I.: Long-range electrical contacting of redox enzymes by SWCNT connectors. Angew. Chem., Int. Ed. 43(14), 2113–2117 (2004). doi: 10.1002/anie.200353275 Google Scholar
  14. 14.
    Vaze, A., Hussain, N., Tang, C., Leech, D., Rusling, J.: Biocatalytic anode for glucose oxidation utilizing carbon nanotubes for direct electron transfer with glucose oxidase Electrochem. Comm. 11(10), 2004–2007 (2009). doi: 10.1016/j.elecom.2009.08.039 Google Scholar
  15. 15.
    Cai, C., Chen, J.: Direct electron transfer and bioelectrocatalysis of hemoglobin at a carbon nanotube electrode Anal. Biochem. 325(2), 285–292 (2004). doi: 10.1016/j.ab.2003.10.040 Google Scholar
  16. 16.
    Gooding, J.J., Wibowo, R., Liu, J., Yang, W., Losic, D., Orbons, S., Mearns, F.J., Shapter, J.G., Hibbert, D.B.: Protein electrochemistry using aligned carbon nanotube arrays. J. Am. Chem. Soc. 125(30), 9006–9007 (2003)CrossRefGoogle Scholar
  17. 17.
    Wang, L., Wang, J., Zhou, F.: Direct electrochemistry of catalase at a gold electrode modified with single-wall carbon nanotubes. Electroanalysis 16(8), 627–632 (2004). doi: 10.1002/elan.200302849 CrossRefGoogle Scholar
  18. 18.
    Wait, A.F., Parkin, A., Morley, G.M., dos Santos, L., Armstrong, F.A.: Characteristics of enzyme-based hydrogen fuel cells using an oxygen-tolerant hydrogenase as the anodic catalyst. J. Phys. Chem. C 114(27), 12003–12009 (2010). doi: 10.1021/jp102616m CrossRefGoogle Scholar
  19. 19.
    Alonso-Lomillo, M.A., Ruediger, O., Maroto-Valiente, A., Velez, M., Rodriguez-Ramos, I., Munoz, F.J., Fernandez, V.M., De Lacey, A.L.: Hydrogenase-coated carbon nanotubes for efficient H2 oxidation. Nano Lett. 7(6), 1603–1608 (2007). doi: 10.1021/nl070519u CrossRefGoogle Scholar
  20. 20.
    Lojou, E., Luo, X., Brugna, M., Candoni, N., Dementin, S., Giudici-Orticoni, M.T.: Biocatalysts for fuel cells: efficient hydrogenase orientation for H2 oxidation at electrodes modified with carbon nanotubes. J. Biol. Inorg. Chem. 13(7), 1157 (2008). doi: 10.1007/s00775-008-0401-8 CrossRefGoogle Scholar
  21. 21.
    Luo, X., Brugna, M., Tron-Infossi, P., Giudici-Orticoni, M.T., Lojou, É.: Immobilization of the hyperthermophilic hydrogenase from Aquifex aeolicus bacterium onto gold and carbon nanotube electrodes for efficient H2 oxidation. J. Biol. Inorg. Chem. 14(8), 1275–1288 (2009). doi: 10.1007/s00775-009-0572-y CrossRefGoogle Scholar
  22. 22.
    Yan, Y., Zheng, W., L. Su, L.M.: Carbon-nanotube-based glucose/O2 biofuel cells. Adv. Mater. 18(19), 2639–2643 (2006). doi: 10.1002/adma.200600028
  23. 23.
    Yan, Y.-M., Yehezkeli, O., Willner, I.: Integrated, electrically contacted NAD(P) + -dependent enzyme–carbon nanotube electrodes for biosensors and biofuel cell applications. Chem. Eur. J. 13(36), 10168–10175 (2007). doi: 10.1002/chem.200700806 CrossRefGoogle Scholar
  24. 24.
    Li, X., Zhou, H., Yu, P., Su, L., Ohsaka, T., Mao, L.: A miniature glucose/O2 biofuel cell with single-walled carbon nanotubes-modified carbon fiber microelectrodes as the substrate. Electrochem. Comm. 10(6), 851–854 (2008). doi: 10.1016/j.elecom.2008.03.019 CrossRefGoogle Scholar
  25. 25.
    Saleh, F.S., Mao, L., Ohsaka, T.: Development of a dehydrogenase-based glucose anode using a molecular assembly composed of nile blue and functionalized SWCNTs and its applications to a glucose sensor and glucose/O2 biofuel cell Sens. Actuators B 152(1), 130–135 (2011). doi: 10.1016/j.snb.2010.07.054 CrossRefGoogle Scholar
  26. 26.
    Zebda, A., Gondran, C., Le Goff, A., Holzinger, M., Cinquin, P., Cosnier, S.: Mediatorless high-power glucose biofuel cells based on compressed carbon nanotube-enzyme electrodes. Nature communications (doi: 10.1038/ncomms1365) (2011, in press). doi: 10.1038/ncomms1365
  27. 27.
    Miyake, T., Yoshino, S., Yamada, T., Hata, K., Nishizawa, M.: Self-regulating enzyme—nanotube ensemble films and their application as flexible electrodes for biofuel cells. J. Am. Chem. Soc. (doi:  10.1021/ja111517e) (2011, in press). doi: 10.1021/ja111517e
  28. 28.
    Zheng, W., Zhao, H.Y., Zhang, J.X., Zhou, H.M., Xu, X.X., Zheng, Y.F., Wang, Y.B., Cheng, Y., Jang, B.Z.: A glucose/O2 biofuel cell base on nanographene platelet-modified electrodes. Electrochem. Comm. 12(7), 869–871 (2010). doi: 10.1016/j.elecom.2010.04.006 CrossRefGoogle Scholar
  29. 29.
    Guo, C.X., Hu, F.P., Lou, X.W., Li, C.M.: High-performance biofuel cell made with hydrophilic ordered mesoporous carbon as electrode material. J. Power Source 195(13), 4090–4097 (2010). doi: 10.1016/j.jpowsour.2010.01.071 CrossRefGoogle Scholar
  30. 30.
    Wen, D., Xu, X., Dong, S.: A single-walled carbon nanohorn-based miniature glucose/air biofuel cell for harvesting energy from soft drinks. Energy & Environ. Sci. 4(4), 1358–1363 (2011). doi: 10.1039/C0EE00080A CrossRefGoogle Scholar
  31. 31.
    Zhou, M., Guo, J., Guo, L.-p., Bai, J.: Electrochemical sensing platform based on the highly ordered mesoporous carbon-fullerene system. Anal. Chem. 80(12), 4642–4650 (2008). doi: 10.1021/ac702496k Google Scholar
  32. 32.
    Mousty, C.: Biosensing applications of clay-modified electrodes: a review Anal. Bioanal. Chem. 396(1), 315–325 (2010). doi: 10.1007/s00216-009-3274-y CrossRefGoogle Scholar
  33. 33.
    Shan, D., Cosnier, S., Mousty, C.: HRP wiring by redox active layered double hydroxides: application to the mediated H2O2 detection. Anal. Lett. 36(5), 909–922 (2003). doi: 10.1081/AL-120019252 CrossRefGoogle Scholar
  34. 34.
    Mousty, C., Vieille, L., Cosnier, S.: Laccase immobilization in redox active layered double hydroxides: A reagentless amperometric biosensor Biosens. Bioelectron. 22(8), 1733–1738 (2007). doi: 10.1016/j.bios.2006.08.020 CrossRefGoogle Scholar
  35. 35.
    Brunel, L., Denele, J., Servat, K., Kokoh, K.B., Jolivalt, C., Innocent, C., Cretin, M., Rolland, M., Tingry, S.: Oxygen transport through laccase biocathodes for a membrane-less glucose/O2 biofuel cell. Electrochem. Commun. 9(2), 331–336 (2007). doi: 10.1016/j.elecom.2006.09.021 CrossRefGoogle Scholar
  36. 36.
    Deng, L., Shang, L., Wang, Y., Wang, T., Chen, H., Dong, S.: Multilayer structured carbon nanotubes/poly-l-lysine/laccase composite cathode for glucose/O2 biofuel cell electrochem. Comm. 10(7), 1012–1015 (2008). doi: 10.1016/j.elecom.2008.05.001 Google Scholar
  37. 37.
    Boland, S., Jenkins, P., Kavanagh, P., Leech, D.: Biocatalytic fuel cells: A comparison of surface pre-treatments for anchoring biocatalytic redox films on electrode surfaces. J. Electroanal. Chem. 626(1–2), 111–115 (2009). doi: 10.1016/j.jelechem.2008.11.010 Google Scholar
  38. 38.
    Tan, Y., Deng, W., Ge, B., Xie, Q., Huang, J., Yao, S.: Biofuel cell and phenolic biosensor based on acid-resistant laccase–glutaraldehyde functionalized chitosan–multiwalled carbon nanotubes nanocomposite film. Biosens. Bioelectron. 24(7), 2225–2231 (2009). doi: 10.1016/j.bios.2008.11.026 CrossRefGoogle Scholar
  39. 39.
    Cosnier, S.: Recent advances in biological sensors based on electrogenerated polymers: a review. Anal. Lett. 40(7), 1260–1279 (2007). doi: 10.1080/00032710701326643 CrossRefGoogle Scholar
  40. 40.
    Pingarrón, J.M., Yáñez-Sedeño, P., González-Cortés, A.: Gold nanoparticle-based electrochemical biosensors. Electrochim. Acta. 53(19), 5848–5866 (2008). doi: 10.1016/j.electacta.2008.03.005 CrossRefGoogle Scholar
  41. 41.
    Yi, X., Huang-Xian, J., Hong-Yuan, C.: Direct electrochemistry of horseradish peroxidase immobilized on a colloid/cysteamine-modified gold Electrode anal. Biochem. 278(1), 22–28 (2000). doi: 10.1006/abio.1999.4360 Google Scholar
  42. 42.
    Liu, S., Ju, H.: Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode Biosens. & Bioelectron. 19(3), 177–183 (2003). doi: 10.1016/S0956-5663(03)00172-6 Google Scholar
  43. 43.
    Yehezkeli, O., Tel-Vered, R., Raichlin, S., Willner, I.: Nano-engineered flavin-dependent glucose dehydrogenase/gold nanoparticle-modified electrodes for glucose sensing and biofuel cell applications. ACS Nano 5(3), 2385–2391 (2011). doi: 10.1021/nn200313t CrossRefGoogle Scholar
  44. 44.
    Murata, K., Kajiya, K., Nakamura, N., Ohno, H.: Direct electrochemistry of bilirubin oxidase on three-dimensional gold nanoparticle electrodes and its application in a biofuel cell. Energy Environ. Sci. 2, 1280–1285 (2009). doi: 10.1039/B912915D CrossRefGoogle Scholar
  45. 45.
    Deng, L., Shang, L., Wen, D., Zhai, J., Dong, S.: A membraneless biofuel cell powered by ethanol and alcoholic beverage biosen. Bioelectron. 26(1), 70–73 (2010). doi: 10.1016/j.bios.2010.05.007 CrossRefGoogle Scholar
  46. 46.
    Reisner, E., Powell, D.J., Cavazza, C., Fontecilla-Camps, J.C., Armstrong, F.A.: Visible light-driven H2 production by hydrogenases attached to dye-sensitized TiO2 nanoparticles. J. Am. Chem. Soc. 131(51), 18457–18466 (2009). doi: 10.1021/ja907923r CrossRefGoogle Scholar
  47. 47.
    Hambourger, M., Gervaldo, M., Svedruzic, D., King, P.W., Gust, D., Ghirardi, M., Moore, A.L., Moore, T.A.: [FeFe]-hydrogenase-catalyzed H2 production in a photoelectrochemical biofuel cell. J. Am. Chem. Soc. 130(6), 2015–2022 (2008). doi: 10.1021/ja077691k CrossRefGoogle Scholar
  48. 48.
    Kim, J., Kim, S.I., Yoo, K.-H.: Polypyrrole nanowire-based enzymatic biofuel cells. Biosens Bioelectron. 25(2), 350–355 (2009). doi: 10.1016/j.bios.2009.07.020 CrossRefGoogle Scholar
  49. 49.
    Pan, C., Fang, Y., Wu, H., Ahmad, M., Luo, Z., Li, Q., Xie, J., Yan, X., Wu, L., Wang, Z.L., Zhu, J.: Generating electricity from biofluid with a nanowire-based biofuel cell for self-powered nanodevices. Adv. Mat. 22(47), 5388–5392 (2010). doi: 10.1002/adma.201002519 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Serge Cosnier
    • 1
  • Alan Le Goff
    • 1
  • Michael Holzinger
    • 1
  1. 1.Département de Chimie Moléculaire, UMR-5250, ICMG FR-2607, CNRSUniversité Joseph FourierGrenoble Cedex 9France

Personalised recommendations