Event Processing and Real-Time Monitoring over Streaming Traffic Data

  • Kostas Patroumpas
  • Timos Sellis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7236)


Tracking mobility of humans, animals or merchandise has recently given rise to a wide variety of location-based services and monitoring applications. In this paper, we particularly focus on real-time traffic surveillance over densely congested road networks in large metropolitan areas. In such a setting, streaming positional updates are being frequently relayed into a central server from numerous moving vehicles (buses, taxis, passenger cars etc.). Our analysis concerns two important aspects. First, we outline characteristics of a robust processing engine that is capable to efficiently manage such massive, transient, and perhaps noisy geospatial data. Our objective is to provide online aggregates and reliable estimates regarding the current traffic situation at multiple levels of resolution. At a second step, we design a framework for effective multi-modal dissemination of derived information to the end users, in the form of interactive maps for intuitive visualization as well as instant notifications via message feeds. As a proof of concept, we also report on our ongoing development of EPOPS; in its current version, this functional prototype of the proposed scheme is able to deliver cross-platform geographic, textual, and even multimedia content through web and smartphone interfaces.


cross-platform dissemination events geostreaming multi-resolution traffic analytics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Biem, A., Bouillet, E., Feng, H., Ranganathan, A., Riabov, A., Verscheure, O., Koutsopoulos, H., Moran, C.: IBM InfoSphere Streams for Scalable, Real-time, Intelligent Transportation Services. In: SIGMOD, pp. 1093–1104 (2010)Google Scholar
  2. 2.
    Bouillet, E., Ranganathan, A.: Scalable, Real-Time Map-Matching Using IBM’s System S. In: MDM, pp. 249–257 (2010)Google Scholar
  3. 3.
    Brakatsoulas, S., Pfoser, D., Salas, R., Wenk, C.: On Map-Matching Vehicle Tracking Data. In: VLDB, pp. 853–864 (2005)Google Scholar
  4. 4.
    Cao, H., Wolfson, O.: Nonmaterialized Motion Information in Transport Networks. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 173–188. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Civilis, A., Jensen, C.S., Pakalnis, S.: Techniques for Efficient Road-network-based Tracking of Moving Objects. IEEE TKDE 17(5), 698–712 (2005)Google Scholar
  6. 6.
    de Fabritiis, C., Ragona, R., Valenti, G.: Traffic Estimation and Prediction Based on Real Time Floating Car Data. In: IEEE ITSC, pp. 197–203 (2008)Google Scholar
  7. 7.
    Geisler, S., Quix, C., Schiffer, S.: A Data Stream-based Evaluation Framework for Traffic Information Systems. In: IWGS, pp. 11–18 (2010)Google Scholar
  8. 8.
    Greenfeld, J.: Matching GPS Observations to Locations on a Digital Map. In: 81th Annual Meeting of the Transportation Research Board, Washington, DC (2002)Google Scholar
  9. 9.
    Güting, R.H., Böhlen, M.H., Erwig, M., Jensen, C.S., Lorentzos, N.A., Schneider, M., Vazirgiannis, M.: A Foundation for Representing and Querying Moving Objects. ACM Transactions on Database Systems 25(1), 1–42 (2000)CrossRefGoogle Scholar
  10. 10.
    Hull, B., Bychkovsky, V., Zhang, Y., Chen, K., Goraczko, M., Miu, A., Shih, E., Balakrishnan, H., Madden, S.: CarTel: A Distributed Mobile Sensor Computing System. In: SenSys, pp. 125–138 (2006)Google Scholar
  11. 11.
    Kazemitabar, S.J., Demiryurek, U., Ali, M., Akdogan, A., Shahabi, C.: Geospatial Stream Query Processing using Microsoft SQL Server StreamInsight. In: VLDB, pp. 1537–1540 (2010)Google Scholar
  12. 12.
    Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.: Map-Matching for Low-Sampling-Rate GPS Trajectories. In: ACM GIS, pp. 352–361 (2009)Google Scholar
  13. 13.
    Patroumpas, K., Kefallinou, E., Sellis, T.: Monitoring Continuous Queries over Streaming Locations. In: ACM GIS, pp. 521–522 (2008)Google Scholar
  14. 14.
    Patroumpas, K., Sellis, T.: Multi-granular Time-based Sliding Windows over Data Streams. In: IEEE TIME, pp. 146–153 (2010)Google Scholar
  15. 15.
    Patroumpas, K., Sellis, T.: Maintaining consistent Results of Continuous Queries under Diverse Window Specifications. Information Systems 36(1), 42–61 (2011)CrossRefGoogle Scholar
  16. 16.
    pgRouting Project,
  17. 17.
  18. 18.
    Tufte, K., Li, J., Maier, D., Papadimos, V., Bertini, R., Rucker, J.: Travel Time Estimation using NiagaraST and latte. In: SIGMOD, pp. 1091–1093 (2007)Google Scholar
  19. 19.
    Velaga, N., Quddus, M., Bristow, A.: Developing an Enhanced Weight-based Topological Map-matching Algorithm for Intelligent Transport Systems. Transportation Research, Part C 17, 672–683 (2009)CrossRefGoogle Scholar
  20. 20.
    Wang, W., Jin, J., Ran, B., Guo, X.: Large-Scale Freeway Network Traffic Monitoring: A Map-Matching Algorithm Based on Low-Logging Frequency GPS Probe Data. Journal of Intelligent Transportation Systems 15(2), 63–74 (2011)CrossRefGoogle Scholar
  21. 21.
    Weber, M., Liu, L., Jones, K., Covington, M.J., Nachman, L., Pesti, P.: On Map Matching of Wireless Positioning Data: A Selective Look-ahead Approach. In: ACM GIS, pp. 290–299 (2010)Google Scholar
  22. 22.
    Wei, L., Peng, W., Lin, C., Jung, C.: Exploring Spatio-Temporal Features for Traffic Estimation on Road Networks. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644, pp. 399–404. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Wenk, C., Salas, R., Pfoser, D.: Addressing the Need for Map-Matching Speed: Localizing Global Curve-Matching Algorithms. In: SSDBM, pp. 379–388 (2006)Google Scholar
  24. 24.
    Yoon, J., Noble, B., Liu, M.: Surface Street Traffic Estimation. In: MobiSys, pp. 220–232 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Kostas Patroumpas
    • 1
  • Timos Sellis
    • 1
    • 2
  1. 1.School of Electrical and Computer EngineeringNational Technical University of AthensHellas
  2. 2.Institute for the Management of Information SystemsR.C. “Athena”Hellas

Personalised recommendations