Advertisement

Introduction

  • Gang Kou
  • Daji Ergu
  • Yi Peng
  • Yong Shi
Chapter
Part of the Quantitative Management book series (QUANT, volume 1)

Abstract

In complex decision making environment, decision making usually involves tangible and intangible multiple criteria and alternatives to choose from. To deal with such qualitative and quantitative factors in multiple criteria decision making (MCDM), in 1970s, Saaty (1978, 1979, 1980) proposed an Analytical Hierarchy Process (AHP). Since then, this method has been extensively applied into many real applications, for instance in manufacturing systems (Li and Huang 2009), quality consultants (Cebeci and Ruan 2007), software evaluation (Cebeci 2009; Peng et al. 2011a), supplier evaluation and selection (Akarte et al. 2001; Handfield et al. 2002; Chan 2003; Bayazit 2006; Chamodrakas et al. 2010; Labib 2011), strategy selection (Li and Li 2009; Chen and Wang 2010), weapon selection (Dagdeviren et al. 2009), project selection (Enea and Piazza 2004; Amiri 2010).

Keywords

Analytical Hierarchy Process Quality Function Deployment Analytic Network Process Pairwise Comparison Matrix Multiple Criterion Decision Making 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aguarón J, Moreno-Jiménez J (2003) The geometric consistency index: approximated thresholds. Eur J Oper Res 147:137–145CrossRefGoogle Scholar
  2. Akarte MM, Surendra NV, Ravi B, Rangaraj N (2001) Web based casting supplier evaluation using analytical hierarchy process. J Oper Res Soc 52(5):511–522CrossRefGoogle Scholar
  3. Aktar DE, Ustun O (2009) Analytic network process and multi-period goal programming integration in purchasing decisions. Comput Ind Eng 56(2):677–690CrossRefGoogle Scholar
  4. Alonso J, Lamata T (2006) Consistency in the analytic hierarchy process: a new approach. Int J Uncert, Fuzz Knowl-Based Syst 14:445–459CrossRefGoogle Scholar
  5. Alonso S, Chiclana F, Herrera F, Herrera-Viedma E (2004) A learning procedure to estimate missing values in fuzzy preference relations based on additive consistency. In: Torra V, Narukawa Y (eds) MDAI 2004. Springer, Berlin/Heidelberg, pp 227–238Google Scholar
  6. Alonso S, Chiclana F, Herrera F, Herrera-Viedma E (2008) A consistency-based procedure to estimate missing pairwise preference values. Int J Intell Syst 23:155–175CrossRefGoogle Scholar
  7. Amiri MP (2010) Project selection for oil-fields development by using the AHP and fuzzy TOPSIS methods. Expert Syst Appl 37(9):6218–6224CrossRefGoogle Scholar
  8. Barzilai J (1997) Deriving weights from pairwise comparison matrices. J Opl Res Soc 48:1226–1232Google Scholar
  9. Bayazit O (2006) Use of analytic network process in vendor selection decisions. Benchmark Int J 13(5):566–579CrossRefGoogle Scholar
  10. Bayazit O, Karpak B (2007) An analytical network process-based framework for successful total quality management (TQM): an assessment of Turkish manufacturing industry readiness. Int J Prod Econ 105(1):79–96CrossRefGoogle Scholar
  11. Brunelli M, Fedrizzi M, Giove S (2007) Reconstruction methods for incomplete fuzzy preference relations: a numerical comparison. In: Masulli F, Mitra S, Pasi G (eds) WILF 2007, LNAI, 2007. Springer, Berlin/Heidelberg, pp 86–93Google Scholar
  12. Bryson N (1995) A goal programming method for generating priority vectors. J Opl Res Soc 46:641–648Google Scholar
  13. Caballero-Luque A, Aragonés-Beltrán P, García-Melón M, Dema-Pérez C (2010) Analysis of the alignment of company goals to web content using ANP. Int J Inf Technol Decis Mak 9(3):419–436CrossRefGoogle Scholar
  14. Cao D, Leung LC, Law JS (2008) Modifying inconsistent comparison matrix in analytic hierarchy process: a heuristic approach. Decis Supp Syst 44:944–953CrossRefGoogle Scholar
  15. Carmone FJ, Kara A, Zanakis SH (1997) A Monte Carlo investigation of incomplete pairwise comparison matrices in AHP. Eur J Oper Res 102(3):538–553CrossRefGoogle Scholar
  16. Cebeci U (2009) Fuzzy AHP-based decision support system for selecting ERP systems in textile industry by using balanced scorecard. Expert Syst Appl 36:8900–8909CrossRefGoogle Scholar
  17. Cebeci U, Ruan D (2007) A multi-attribute comparison of Turkish quality consultants by fuzzy AHP. Int J Inf Technol Decis Mak 6(1):191–207CrossRefGoogle Scholar
  18. Chamodrakas I, Batis D, Martakos D (2010) Supplier selection in electronic marketplaces using satisficing and fuzzy AHP. Expert Syst Appl 37:490–498CrossRefGoogle Scholar
  19. Chan FTS (2003) Interactive selection model for supplier selection process: an analytical hierarchy process approach. Int J Prod Res 41(15):3549–3579CrossRefGoogle Scholar
  20. Chen MK, Wang S-C (2010) The critical factors of success for information service industry in developing international market: using analytic hierarchy process (AHP) approach. Expert Syst Appl 37:694–704CrossRefGoogle Scholar
  21. Chiclana F, Herrera-Viedma E, Alonso S (2009) A note on two methods for estimating missing pairwise preference values. IEEE Trans Syst Man Cybernet B Cybernet 39:1628–1633CrossRefGoogle Scholar
  22. Choo E, Wedley W (2004) A common framework for deriving preference values from pairwise comparison matrices. Comput Oper Res 31(6):893–908CrossRefGoogle Scholar
  23. Chu A, Kalaba R, Springam K (1979) A comparison of two methods for determining the weights of belonging to fuzzy sets. J Opt Theory Appl 27:531–541CrossRefGoogle Scholar
  24. Chung SH, Lee AHI, Pearn WL (2005) Analytic network process (ANP) approach for product mix planning in semiconductor fabricator. Int J Prod Econ 96(1):15–36CrossRefGoogle Scholar
  25. Crawford G, Williams C (1985) A note on the analysis of subjective judgment matrices. J Math Psychol 29:387–405CrossRefGoogle Scholar
  26. Dagdeviren M, Yuksel I, Kurt M (2008) A fuzzy analytic network process (ANP) model to identify faulty behavior risk (FBR) in work system. Safety Sci 46(5):771–783CrossRefGoogle Scholar
  27. Dagdeviren M, Yavuz S, KilInç N (2009) Weapon selection using the AHP and TOPSIS methods under fuzzy environment. Expert Syst Appl 36:8143–8151CrossRefGoogle Scholar
  28. Enea M, Piazza T (2004) Project selection by constrained fuzzy AHP. Fuzzy Optimiz Decis Mak 3:39–62CrossRefGoogle Scholar
  29. Ergu D, Kou G (2011) Questionnaire design improvement and missing item scores estimation for rapid and efficient decision making. Ann Oper Res 2011. doi: 10.1007/s10479-011-0922-3
  30. Ergu D, Kou G (2012) IAABM for consistency test in pairwise comparison matrix. InformationGoogle Scholar
  31. Ergu D, Kou G, Peng Y, Shi Y (2011a) A new consistency index for comparison matrices in the ANP, New State of MCDM in the 21st Century. Lecture notes in economics and mathematical systems, vol 648, part 1, pp 47–56Google Scholar
  32. Ergu D, Kou G, Peng Y, Shi Y (2011b) A simple method to improve the consistency ratio of the pair-wise comparison matrix in ANP. Eur J Oper Res 213(1):246–259. doi: 10.1016/j.ejor.2011.03.014 CrossRefGoogle Scholar
  33. Ergu D, Kou G, Peng Y, Shi Y, Shi Yu (2011c) BIMM: a bias induced matrix model for incomplete reciprocal pairwise comparison matrix. J Multi-Crit Decis Anal. doi: 10.1002/mcda.472
  34. Ergu D, Kou G, Peng Y, Shi Y, Shi Yu (2011d) The analytic hierarchy process: task scheduling and resource allocation in cloud computing environment. J Supercomput. doi: 10.1007/s11227-011-0625-1
  35. Ergu D, Kou G, Shi Y, Shi Yu (2011e) Analytic network process in risk assessment and decision analysis. Comput Oper Res. doi: 10.1016/j.cor.2011.03.005
  36. Fedrizzi M, Giove S (2007) Incomplete pairwise comparison and consistency optimization. Eur J Oper Res, Elsevier, 183(1):303–313Google Scholar
  37. Forman EH (1990) Random indices for incomplete pairwise comparison matrices. Eur J Oper Res 48(1):153–155CrossRefGoogle Scholar
  38. Hafeez K, Zhang Y, Malak N (2002) Determining key capabilities of a firm using analytic hierarchy process. Int J Prod Econ 76(1):39–51CrossRefGoogle Scholar
  39. Handfield R, Walton SV, Sroufe R, Melnyk SA (2002) Applying environmental criteria to supplier assessment: a study in the application of the analytical hierarchy process. Eur J Oper Res 141(1):70–87CrossRefGoogle Scholar
  40. Harker P, Vargas L (1987) The theory of ratio scale estimation: Saaty’s analytic hierarchy process. Manage Sci 33(11):1383–1403CrossRefGoogle Scholar
  41. Hu Y-C, Tsai J-F (2006) Backpropagation multi-layer perception for incomplete pairwise comparison matrices in analytic hierarchy process. Appl Math Comput 180(1):53–62CrossRefGoogle Scholar
  42. Iida Y (2009) Ordinality consistency test about items and notation of a pairwise comparison matrix in AHP. In: Proceedings of the international symposium on the Analytic Hierarchy ProcessGoogle Scholar
  43. Ishizaka A, Lusti M (2004) An expert module to improve the consistency of AHP matrices. Int Trans Oper Res 11:97–105. doi: 10.1111/j.1475-3995.2004.00443.x CrossRefGoogle Scholar
  44. Kahraman C, Ertay T, Buyukozkan G (2006) A fuzzy optimization model for QFD planning process using analytic network approach. Eur J Oper Res 171(2):390–411CrossRefGoogle Scholar
  45. Karsak EE, Sozer S, Alptekin SE (2003) Product planning in quality function deployment using a combined analytic network process and goal programming approach. Comput Ind Eng 44(1):171–190CrossRefGoogle Scholar
  46. Koczkodaj WW (1993) A new definition of consistency of pairwise comparisons. Math Comput Model 18(7):79–84CrossRefGoogle Scholar
  47. Koczkodaj WW, Szarek SJ (2010) On distance-based inconsistency reduction algorithms for pairwise comparisons. Logic J IGPL 18(6):859–869CrossRefGoogle Scholar
  48. Labib AW (2011) A supplier selection model: a comparison of fuzzy logic and the analytic hierarchy process. Int J Prod Res 49(21):6287–6299CrossRefGoogle Scholar
  49. Lee JW, Kim SH (2000) Using analytic network process and goal programming for interdependent information system project selection. Comput Oper Res 27(4):367–382CrossRefGoogle Scholar
  50. Levy J, Taji K (2007) Group decision support for hazards planning and emergency management: a group analytic network process (GANP) approach. Math Comput Model 46(7–8):906–917CrossRefGoogle Scholar
  51. Li T-S, Huang H-H (2009) Applying TRIZ and Fuzzy AHP to develop innovative design for automated manufacturing systems. Expert Syst Appl 36:8302–8312CrossRefGoogle Scholar
  52. Li S, Li JZ (2009) Hybridising human judgment, AHP, simulation and a fuzzy expert system for strategy formulation under uncertainty. Expert Syst Appl 36:5557–5564CrossRefGoogle Scholar
  53. Li H, Ma L (2007) Detecting and adjusting ordinal and cardinal inconsistencies through a graphical and optimal approach in ahp models. Comput Oper Res 34(3):780–798CrossRefGoogle Scholar
  54. Lin C (2007) A revised framework for deriving preference values from pairwise comparison matrices. Eur J Oper Res 176(2):1145–1150CrossRefGoogle Scholar
  55. Liu W (1999) A new method of rectifying judgment matrix. Syst Eng Theory Pract 6:30–34, in ChineseGoogle Scholar
  56. Lootsma FA (1988) Numerical scaling of human judgment in pairwise-comparison methods for fuzzy multi-criteria decision analysis. In: Lootsma FA (ed) Mathematical models for decision support, vol 48, NATO ASI series F, computer and system sciences. Springer, Berlin, pp 57–88CrossRefGoogle Scholar
  57. Lootsma FA (1991) Scale sensitivity and rank preservation in a multiplicative variant of the AHP and SMART. Report 91-67, Faculty of Technical Mathematics and Informatics, Delft University of Technology, DelftGoogle Scholar
  58. Lu ST, Lin CW, Ko PH (2007) Application of analytic network process (ANP) in assessing construction risk of urban bridge project. In: International conference on innovative computing, information and control (ICICIC 07), pp 169–169Google Scholar
  59. Mikhailov L, Singh MG (2003) Fuzzy analytic network process and its application to the development of decision support systems. IEEE Trans Syst Man Cybern C Appl Rev 33(1):33–41CrossRefGoogle Scholar
  60. Moreno Jiménez JM, Vargas LG (1993) A probabilistic study of preference structures in the analytic hierarchy process with interval judgements. Math Comput Model 17(4/5):73–81CrossRefGoogle Scholar
  61. Niemira MP, Saaty TL (2004) An analytic network process model for financial-crisis forecasting. Int J Forecast 20(4):573–587CrossRefGoogle Scholar
  62. Pelaez JI, Lamata MT (2003) A new measure of consistency for positive reciprocal matrices. Comput Math Appl 46(12):1839–1845CrossRefGoogle Scholar
  63. Peng Y, Kou G, Wang G, Wu W, Shi Y (2011a) Ensemble of software defect predictors: an AHP-based evaluation method. Int J Inf Technol Decis Mak 10(1):187–206CrossRefGoogle Scholar
  64. Peng Y, Wang G, Kou G, Shi Y (2011b) An empirical performance metric for classification algorithm selection in financial risk management. Appl Soft Comput 11(2):2906–2915CrossRefGoogle Scholar
  65. Peng Y, Kou G, Wang G, Shi Y (2011c) FAMCDM: a fusion approach of MCDM methods to rank multiclass classification algorithms. Omega. doi: 10.1016/j.omega.2011.01.009
  66. Raisinghani MS, Meade L, Schkade LL (2007) Strategic e-business decision analysis using the analytic network process. Eng Manage IEEE Trans 54(4):673–686CrossRefGoogle Scholar
  67. Saaty TL (1977) A scaling method for priorities in hierarchical structures. J Math Psychol 15(3):234–281CrossRefGoogle Scholar
  68. Saaty TL (1978) Modeling unstructured decision problems-the theory of analytical hierarchies. Math Comput Simulat 20:147–158CrossRefGoogle Scholar
  69. Saaty TL (1979) Applications of analytical hierarchies. Math Comput Simulat 21:1–20CrossRefGoogle Scholar
  70. Saaty TL (1980) The analytical hierarchy process. McGraw-Hill, New YorkGoogle Scholar
  71. Saaty TL (1986) Axiomatic foundation of the analytic hierarchy process. Manage Sci 32(7):841–855CrossRefGoogle Scholar
  72. Saaty RW (1987) The analytic hierarchy process – what it is and how it is used. Math Model 9(3–5):161–176CrossRefGoogle Scholar
  73. Saaty TL (1990) How to make a decision: the analytic hierarchy process. Eur J Oper Res 48(1):9–26CrossRefGoogle Scholar
  74. Saaty TL (1991) Some mathematical concepts of the analytic hierarchy process. Behaviormetrika 29:1–9CrossRefGoogle Scholar
  75. Saaty TL (1994) How to make a decision: the analytic hierarchy process. Interfaces 24:19–43CrossRefGoogle Scholar
  76. Saaty TL (1996) Decision making with dependence and feedback: the analytic network process. RWS Publications, Pittsburgh. ISBN 0-9620317-9-8Google Scholar
  77. Saaty TL (1999) Fundamentals of the analytic network process. In: ISAHP 1999, Kobe, Japan, 12–14 Aug 1999Google Scholar
  78. Saaty TL (2001a) Decision making with the analytic network process (ANP) and its “super decisions” software: the national missile defense (NMD) example. In: ISAHP 2001 proceedings, Bern, Switzerland, 2–4 Aug 2001Google Scholar
  79. Saaty TL (2001b) Deriving the AHP 1–9 scale from first principles. In: ISAHP 2001 proceedings, Bern, SwitzerlandGoogle Scholar
  80. Saaty TL (2003) Decision-making with the AHP: why is the principal eigenvector necessary. Eur J Oper Res 145(1):85–89CrossRefGoogle Scholar
  81. Saaty TL (2004) Fundamentals of the analytic network process: dependence and feedback in decision-making with a single network. J Syst Sci Syst Eng, published at Tsinghua University, Beijing, vol 13, no. 2, pp 129–157Google Scholar
  82. Saaty TL (2005) Theory and applications of the analytic network process: decision making with benefits, opportunities, costs and risks. RWS Publications, Pittsburgh. ISBN 1-888603-06-2Google Scholar
  83. Saaty TL (2006) Rank from comparisons and from ratings in the analytic hierarchy/network processes. Eur J Oper Res 168:557–570CrossRefGoogle Scholar
  84. Saaty TL (2008) The analytic network process. Iran J Oper Res 1(1):1–27Google Scholar
  85. Saaty TL, Zoffer HJ (2011) Negotiating the Israeli-Palestinian controversy from a new perspective. Int J Inf Technol Decis Mak 10(1):5–64CrossRefGoogle Scholar
  86. Thurstone L (1927) A law of comparative judgment. Psychol Rev 34(4):273–286CrossRefGoogle Scholar
  87. Triantaphyllou E, Mann SH (1995) Using the analytic hierarchy process for decision making in engineering applications: Some challenges. Int J Ind Eng Appl Pract 2(1):35–44Google Scholar
  88. Vargas LG (2008) The consistency index in reciprocal matrices: comparison of determinestic and statistical approaches. Eur J Oper Res 191:454–463CrossRefGoogle Scholar
  89. Wei CP, Zhang ZM (2000) An algorithm to improve the consistency of a comparison matrix. Syst Eng Theory Pract 8:62–66, in ChineseGoogle Scholar
  90. Wu WW (2008) Choosing knowledge management strategies by using a combined ANP and DEMATEL approach. Expert Syst Appl 35(3):828–835CrossRefGoogle Scholar
  91. Xu Z, Wei C (1999) A consistency improving method in the analytic hierarchy process. Eur J Oper Res 116:443–449CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Gang Kou
    • 1
  • Daji Ergu
    • 2
  • Yi Peng
    • 1
  • Yong Shi
    • 3
  1. 1.School of Management and EconomicsUniversity of Electronic Science and Technology of ChinaChengduChina, People’s Republic
  2. 2.College of Electrical and Information EngineeringSouthwest University for NationalitiesChengduChina, People’s Republic
  3. 3.University of Nebraska at Omaha IS&TOmahaUSA

Personalised recommendations