The Regularization Aspect of Optimal-Robust Conditional Value-at-Risk Portfolios

Conference paper
Part of the Operations Research Proceedings book series (ORP)

Abstract

In portfolio management, Robust Conditional Value - at - Risk (Robust CVaR) has been proposed to deal with structured uncertainty in the estimation of the assets probability distribution. Meanwhile, regularization in portfolio optimization has been investigated as a way to construct portfolios that show satisfactory out-ofsample performance under estimation error. In this paper, we prove that optimal- Robust CVaR portfolios possess the regularization property. Based on expected utility theory concepts, we explicitly derive the regularization scheme that these portfolios follow and its connection with the scenario set properties.

Keywords

Portfolio Optimization Portfolio Selection Portfolio Management Expected Utility Theory Regularization Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent risk measures. Mathematical Finance 9(3), 203-228 (1999).Google Scholar
  2. 2.
    Black, F., Litterman, R.: Asset allocation: Combining investor views withmarket equilibrium. Technical Report, Fixed Income Research, Goldman Sachs Co., New York (1990).Google Scholar
  3. 3.
    Black, F., Scholes, M.: The Pricing of Options and Corporate Liabilities. Journal of Political Economy 81(3), 637654 (1973).CrossRefGoogle Scholar
  4. 4.
    Ben-Tal, A., Nemirovski, A.: Robust convex optimization. Mathematics of Operations Research 23(4), 769-805 (1998).CrossRefGoogle Scholar
  5. 5.
    Ben-Tal, A., Nemirovski, A.: Robust solutions of uncertain linear programs. Operations Research Letters 25(1), 1-13 (1999).CrossRefGoogle Scholar
  6. 6.
    Ben-Tal, A. Teboulle, M.: An old-new concept of convex risk measures: the optimized certainty equivalent. Mathematical Finance 17(3), 449-476 (2007).CrossRefGoogle Scholar
  7. 7.
    Bertsimas, D., Sim, M.: The price of robustness. Operations Research 52(1), 35-53 (2004).CrossRefGoogle Scholar
  8. 8.
    Chopra, V. K.: Improving optimization. Journal of Investing 8, 51-59 (1993).Google Scholar
  9. 9.
    DeMiguel, V., Garlappi, L., Nogales, F. J., Uppal, R.: A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms. Management Science 55(5), 798-812 (2009).CrossRefGoogle Scholar
  10. 10.
    DeMiguel, V., Nogales, F. J.: Portfolio Selection with Robust Estimation. Operations Research 57(3), 560-577 (2009).CrossRefGoogle Scholar
  11. 11.
    Fertis, A., Baes,M., L¨uthi, H.-J.: Robust RiskManagement. Submitted for publication (2011).Google Scholar
  12. 12.
    Frost, P. A., Savarino, J. E.: An empirical Bayes approach to efficient portfolio selection. Journal of Financial and Quantitative Analysis 21, 293-305 (1986).CrossRefGoogle Scholar
  13. 13.
    Frost, P. A., Savarino, J. E.: For better performance: Constrain portfolio weights. Journal of Portfolio Management 15, 29-34 (1988).CrossRefGoogle Scholar
  14. 14.
    Goldfarb, D., Iyengar, G.: Robust Portfolio Selection Problems. Mathematics of Operations Research 20(1), 1-38 (2003).CrossRefGoogle Scholar
  15. 15.
    Huber, P. J.: Robust Statistics. John Wiley Sons, New York (1981).CrossRefGoogle Scholar
  16. 16.
    Lintner, J.: Valuation of risky assets and the selection of risky investments in stock portfolios and capital budgets. Review of Economics and Statistics 47, 13-37 (1965).CrossRefGoogle Scholar
  17. 17.
    Markowitz, H. M.: Portfolio selection. Journal of Finance 7, 77-91 (1952).Google Scholar
  18. 18.
    Merton, R. C.: Theory of Rational Option Pricing. Bell Journal of Economics and Management Science 4(1), 141-183 (1973).CrossRefGoogle Scholar
  19. 19.
    Mossin, J.: Equilibrium in capital asset markets. Econometrica 34(4), 768-783 (1966).CrossRefGoogle Scholar
  20. 20.
    von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton (1947).Google Scholar
  21. 21.
    Rockafellar, R. T., Uryasev, S.: Optimization of conditional value-at-risk. The Journal of Risk 2(3), 21-41 (2000).Google Scholar
  22. 22.
    Ross, S.: The Arbitrage Theory of Capital Asset Pricing. Journal of Economic Theory 13(3), 341-360 (1976).CrossRefGoogle Scholar
  23. 23.
    Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on Stochastic Programming: Modeling and Theory. SIAM, Philadelphia (2009).CrossRefGoogle Scholar
  24. 24.
    Sharpe, W.: Capital asset prices: A theory of market equilibrium under conditions of risk. Journal of Finance 19(3), 425-442 (1964).Google Scholar
  25. 25.
    Zhu, S., Fukushima, M.:Worst-case conditional value-at-risk with application to robust portfolio management. Operations Research 57(5), 1155-1168 (2009).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Apostolos Fertis
    • 1
  • Michel Baes
  • Hans-Jakob Lüthi
  1. 1.Institute for Operations Research (IFOR)Eidgenössische Technische Hochschule ZürichZürichSwitzerland

Personalised recommendations