Integration of renewable energy sources into the electricity system with new storage and flexibility options

Conference paper
Part of the Operations Research Proceedings book series (ORP)

Abstract

The integration of renewable energy sources is one of the key challenges for the transition of the energy supply chain towards a low carbon society. Due to the intermittency of wind and solar power additional storage and flexibility is required for their integration into the electricity system. Based on a scenario analysis for Germany, the economic and environmental effects of flexibility from electrical cooling as an example for demand side management in a smart grid as well as traditional flexibility from pumped storage power plants is evaluated with the PowerFlex model developed by Ö ko-Institut. In the 2030 scenario with new flexibility, about 500GWh of renewable electricity could be integrated in addition which leads to cost reduction effects as well as a decrease of carbon dioxide emissions.

Keywords

Power Plant Renewable Energy Source Smart Grid Thermal Power Plant Electricity System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B¨urger,V.: Identifikation, Quantifizierung und Systematisierung technischer und verhaltensbedingter Stromeinsparpotenziale privater Haushalte (2009)Google Scholar
  2. 2.
    Cames, M., Matthes, F., Healy, S.: Functioning of the ETS and the Flexible Mechanism. European Parliament’s Committee on Environment, Public Health and Food Safety (2011)Google Scholar
  3. 3.
    Deutsche Energie-Agentur GmbH: Analyse der Notwendigkeit des Ausbaus von Pumpspeicherwerken und anderen Stromspeichern zur Integration der erneuerbaren Energien. (2010)Google Scholar
  4. 4.
    Krause, W., Bauknecht, D., Bischofs, L., Erge, T., Klose, T., R¨uttinger, H., Stadler, M.: Das Leuchtturmprojekt eTelligence. Energy 2.0. (2009)Google Scholar
  5. 5.
    Federal Environment Agency, Germany: National Inventory Report for the German Greenhouse Gas Inventory 1990 - 2009 (2011)Google Scholar
  6. 6.
    Matthes, F.: Energiepreise fr aktuelle Modellierungsarbeiten. Regressionsanalytisch basierte Projektionen. Teil 1: Preise fr Importenergien und Kraftwerksbrennstoffe (2010)Google Scholar
  7. 7.
    Nitsch, J., Pregger, T., Scholz, Y., Naegler, T., Sterner, M., Gerhardt, N., von Oehsen, A., Pape, C., Saint-Drenan, Y., Wenzel, B.: Langfristszenarien und Strategien f¨ur den Ausbau der erneuerbaren Energien in Deutschland bei Ber¨ucksichtigung der Entwicklung in Europa und global (2010)Google Scholar
  8. 8.
    Stamminger, R. (ed.): Synergy Potential of Smart Domestic Appliances in Renewable Energy Systems. Herzogenrath (2009)Google Scholar
  9. 9.
    Umweltbundesamt (ed.): Vergleichende Bewertung der Klimarelevanz von K¨alteanlagen und-ger¨aten f¨ur den Supermarkt. Forschungsbericht 206 44 300 (2008)Google Scholar
  10. 10.
    Verband Deutscher K¨uhlh¨auser und K¨uhllogistikunternehmen e. V.: Erhebung ¨uber die H¨ohe und die Strukturen der gesamten K¨uhl- und Tiefk¨uhllagerkapazit¨aten in Deutschland. Bonn (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Öko-Institut e.V.FreiburgGermany

Personalised recommendations