Advertisement

Carbon Nanotube Actuation

  • Steffen Opitz
  • Sebastian Geier
  • Johannes Riemenschneider
  • Hans Peter Monner
  • Michael Sinapius
Chapter
Part of the Research Topics in Aerospace book series (RTA)

Abstract

The outstanding electrical and mechanical properties of single carbon nanotubes (CNT) are the motivation for an intensive research in various fields of application. The actuation effect constitutes the foundation for any application as a multifunctional material and within the field of adaptronics. The effect is in the majority of cases investigated by a CNT configuration of stochastically aligned CNT, so-called bucky-paper, in an electrolytic environment. The chapter presents an analytical model for a detailed understanding and investigation of the actuation process. The complete description and parameterization of the model is documented. Initial results from experiments with aligned CNT structures and the application of solid electrolytes are presented.

Keywords

Solid Electrolyte Liquid Electrolyte Electrical System Frequency Response Function Actuation Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

The authors would like to thank the German Research Foundation (DFG) for financially supporting the research.

References

  1. 1.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991). (London, UK)CrossRefGoogle Scholar
  2. 2.
    Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D., Rinzler, A.G., Jaschinski, O., Roth, S., Kerzesz, M.: Carbon nanotube actuators. Science 284, 1340–1344 (1999)CrossRefGoogle Scholar
  3. 3.
    Yeo-Heung, Y., Miskin, A., Kang, P., Jain, S., Narasimhadevara, S., Hurd, D., Shinde, V., Schulz, M.J., Shanov, V., He, P., Boerio, F.J., Shi, D., Srivinas, S.: Carbon nanofiber hybrid actuators: part I–liquid electrolyte-based. J. Intell. Mater. Syst. Struct. 17(2), 107–116 (2006)CrossRefGoogle Scholar
  4. 4.
    Yeo-Heung, Y., Miskin, A., Kang, P., Jain, S., Narasimhadevara, S., Hurd, D., Shinde, V., Schulz, M.J., Shanov, V., He, P., Boerio, F.J., Shi, D., Srivinas, S.: Carbon nanofiber hybrid actuators: part II—solid electrolyte-based. J. Intel. Mater. Syst. Struct. 17(3), 191–197 (2006)CrossRefGoogle Scholar
  5. 5.
    Barisci, J. N., Spinks, G.M., Gordon, G.W., John, D.M., Ray, H.B.: Increased actuation rate of electromechanical carbon nanotube actuators using potential pulses with resistance compensation. Smart Mater. Struct. 12, 549–555 (2003)CrossRefGoogle Scholar
  6. 6.
    Mazzoldi, A., De Rossi, D., Baughman, R.H.: Electro-mechanical behavior of carbon nanotube sheets in electrochemicial actuators. In: Bar-Cohen, Y. (ed.) SPIE, EA-PAD, vol. 3987 (2000)Google Scholar
  7. 7.
    Spinks, GM., Wallace, G.G., Baughman, R.H.: Carbon nanotubes actuators. In: Bar-Cohen, Y. (ed.) Electroactive Polymer (EAP) Actuator as Artificial Muscles, Book Chapter 8, vol. PM 136, pp. 223–246. SPIE Press Monograph (2001)Google Scholar
  8. 8.
    Spinks, G.M., Wallace, G.G., Carter, C.D., Zhou, D., Fifield, L.S., Kincaid, C.R., Baughman, R.H.: Conducting polymer, carbon nanotube, and hybrid actuator materials. In: Bar-Cohen, Y. (ed.) Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices, vol. 4329, pp. 199–208. SPIE (2001)Google Scholar
  9. 9.
    Spinks, G.M., Wallace, G.G., Lewis, T.W., Fifield, L.S., Dai, L., Baughman, R.H.: Electrochemically driven actuators from conducting polymers, hydrogels, and carbon nanotubes. In: Wilson, A.R., Asanuma, H. (ed.) Smart Materials, vol. 4234, pp. 223–231. SPIE (2001)Google Scholar
  10. 10.
    Tahhan, M., Van Truong, T., Spinks, G., Wallace, G.G.: Carbon nanotube and polyaniline composite actuators. Smart Mater. Struct. 12, 626–632 (2003)CrossRefGoogle Scholar
  11. 11.
    Spinks, G.M., Xi, B., Van Truong, T., Wallace, G.G.: Actuation behaviour of layered composites of polyaniline, carbon nanotubes and polypyrrole. Synth. Met. 151(1), 8591 (2005)CrossRefGoogle Scholar
  12. 12.
    Riemenschneider, J., Mahrholz, T., Mosch, J., Monner, H.P., Melcher, J.: Carbon nanotubes-smart material of the future: experimental investigation of the system response. ECCOMAS, (Jul 2005)Google Scholar
  13. 13.
    Schmickler, W.: Interfacial electrochemistry. Oxford University Press, Oxford (1996). (ISBN: 0195089324, 1996)Google Scholar
  14. 14.
    Riemenschneider, J., Temmen, H., Monner, H.P.: CNT based actuators: experimental and theoretical investigation of the in-plain strain generation. J. Nanosci. Nanotechnol. (2006)Google Scholar
  15. 15.
    Ghosh, S., Gadagkar, V., Sood, A.K.: Strains induced in carbon nanotubes due to the presence of ions: Ab initio restricted hatree-fock calculations. Chem. Phys. Lett. 406, 10–14 (2005)CrossRefGoogle Scholar
  16. 16.
    Brug, G.J., van den Eeden, A.L.G., Sluyters-Rehbach, M., Sluyters, J.H.: The analysis of electrode impedances complicated by the presence of a constantphase element. J. Electroanal. Chem. 176, 275–295 (1984). MarchCrossRefGoogle Scholar
  17. 17.
    Waidhas, M.: Grundlegende Technologie von Doppelschichtkondensatoren. In: Siemens ZVEI-Workshop, (Jan 2004)Google Scholar
  18. 18.
    Riemenschneider, J., Opitz, S., Sinapius, M., Monner, H.P.: Modeling of carbon nanotube actuators: part I {modeling and electrical properties. J. Intell. Mater. Syst. Struct. 20(2), 245–250 (2009)CrossRefGoogle Scholar
  19. 19.
    Riemenschneider, J., Opitz, S., Sinapius, M., Monner, H.P.: Modeling of carbon nanotube actuators: part II—mechanical properties, electro mechanical coupling and validation of the model. J. Intell. Mater. Syst. Struct. 20(3), 253–263 (2009)CrossRefGoogle Scholar
  20. 20.
    Riemenschneider, J., Mahrholz, T., Mosch, J., Monner, H.P., Melcher, J.: System response of nanotube based actuators. Mech. Adv. Mater. Struct. 14(1), 57–65 (2007)CrossRefGoogle Scholar
  21. 21.
    Barisci, J.N., Wallace, G.G., MacFarlane, D.R., Baughman, R.H.: Investigation of ionic liquids as electrolytes for carbon nanotube electrodes, vol. 6, issue 1, pp. 22–27 (2004)Google Scholar
  22. 22.
    Barisci, J.N., Wallace, G.G., Baughman, R.H.: Electrochemical studies of single-wall carbon nanotubes in aqueous solutions. J. Electroanal. Chem. 488, 92–98 (2000)CrossRefGoogle Scholar
  23. 23.
    Landi, B.J., Raffaelle, R.P., Heben, M.J., Alleman, J.L., VanDerveer, W., Gennett, T.: Single wall carbon nanotube-nafion composite actuators. Nano Lett. 2(11), 1329–1332 (2002)CrossRefGoogle Scholar
  24. 24.
    Landi, B.J., Raffaelle, R.P., Heben, M.J., Alleman, J.L., Van Derveer, W., Gennett, T.: Development and characterization of single wall carbon nanotube-nafion composite actuators. Mater. Sci. Eng. B 116(3), 359–362 (2005)CrossRefGoogle Scholar
  25. 25.
    Kosidlo, U., Eis, D.G., Hying, K., Haque, M.H., Kolaric, I.: Development of measurement set-up for electromechanical analysis of bucky-paper actuators. AZojono: J. Nanotechnol. Online 3, 1–11 (2007)Google Scholar
  26. 26.
    Shahinpoor, M., Kim, K.J.: Ionic polymer-metal composites: I. fundamentals. Smart Mater. Struct. 10(4), 819–833 (2001)CrossRefGoogle Scholar
  27. 27.
    Shahinpoor, M., Kim, K.J.: Ionic polymer-metal composites: Iii. Modeling and simulation as biomimetic sensors, actuators, transducers, and artificial muscles. Smart Mater. Struct. 13(6), 1362–1388 (2004)CrossRefGoogle Scholar
  28. 28.
    Akle, B., Akle, E., Duncan, A., Lee, D.J., Wallmersperger, T.: Forced and free displacement characterization of inonic polymer transducers. Proc. SPIE 7287, 72870N (2009)CrossRefGoogle Scholar
  29. 29.
    Prehn, K., Adelung, R., Heinen, M., Nunes, S.P., Schulte, K.: Catalytically active cnt-polymer-membrane assemblies: From synthesis to application. J. Membr. Sci. 321, 123–130 (2008)CrossRefGoogle Scholar
  30. 30.
    Wang, D., Song, P., Liu, C., Wu, W., Fan, S.: Highly oriented carbon nanotube papersmade of aligned carbon nanotubes. Nanotechnology 19(7), 1–6 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Steffen Opitz
    • 1
  • Sebastian Geier
    • 1
  • Johannes Riemenschneider
    • 1
  • Hans Peter Monner
    • 1
  • Michael Sinapius
    • 1
  1. 1.Institute for Composite StructuresGerman Aerospace Center DLRBraunschweigGermany

Personalised recommendations